Психология  Истории Обучение 

Близнецовый метод позволяет генетикам установить. Методы генетики человека


Генеалогический метод

Типы наследования и формы проявления генетических задатков у человека весьма многообразны и для дифференциации между ними требуются специальные методы анализа, в первую очередь – генеалогический, предложенный Ф. Гальтоном.

Генеалогический метод или изучение родословных предусматривает прослеживание признака в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике этот метод обычно называют клинико-генеалогическим, поскольку речь идет о наблюдении патологических признаков с помощью приёмов клинического обследования. Генеалогический метод относится к наиболее универсальным методам в генетике человека. Он широко применяется при решении теоретических и практических проблем:

1) для установления наследственного характера признака,

2) при определении типа наследования и пенетрантности генотипа,

3) выявление сцепления генов и картирование хромосом,

4) при изучении интенсивности мутационного процесса,

5) при расшифровке механизмов взаимодействия генов,

6) при медико-генетическом консультировании.

Суть генеалогического метода сводится к выяснению родственных связей и прослеживанию признака среди близких и дальних прямых и непрямых родственников. Технически он складывается из двух этапов: составления родословных и генеалогического анализа.

Составление родословной

Сбор сведений о семье начинается с пробанда, которым называется лицо, первым попавшее в поле зрения исследователя.

Дети одной родительской пары (родные братья и сестры) называются сибсами. Семьей в узком смысле, или ядерной семьей, называют родительскую пару и их детей. Более широкий круг кровных родственников лучше обозначать термином «род». Чем больше поколений вовлекается в родословную, тем она обширнее. Это влечёт за собой неточность полученных сведений и, следовательно, неточность родословной в целом. Часто люди не знают даже числа своих двоюродных братьев и сестер, не говоря уже о каких-то признаках у них и их детей.

Для наглядности готовят графическое изображение родословной. Для этого обычно пользуются стандартными символами. Если рассматриваемых признаков в родословной много, то можно прибегать к буквенным или штриховым различиям внутри символов. Схема родословной обязательно сопровождается описанием обозначений под рисунком – легендой, что исключает возможность неправильных истолкований.

Генеалогический анализ

Целью генеалогического анализа является установление генетических закономерностей.

1 этап – установление наследственного характера признака. Если в родословной встречается один и тот же признак несколько раз, то можно думать о наследственной его природе. Однако надо прежде всего исключить возможность экзогенного накопления случаев в семье или роду. Например, если один и тот же патогенный фактор действовал на женщину во время всех беременностей, то у нее могут родиться несколько детей с одинаковыми аномалиями. Или же какой-то фактор действовал на многих членов семьи, необходимо сличить действие сходных внешних факторов. С помощью генеалогического метода были описаны все наследственные болезни.

2 этап – установление типа наследования и пенетрантности гена. Для этого используют принципы как генетического анализа, так и статистические методы обработки данных из родословной.

3 этап – определение групп сцепления и картирования хромосом, до недавнего времени основывающегося только на генеалогическом методе. Выясняют сцепленные признаки и процесс кроссинговера. Этому способствуют разработанные математические методы.

4 этап – изучение мутационного процесса. Он применяется в трех направлениях: при изучении механизмов возникновения мутаций, интенсивности мутационного процесса и факторов, вызывающих мутации. Особенно широко генеалогический метод применяется при изучении спонтанных мутаций, когда надо различать «спорадически» возникшие случаи от «семейных».

5 этап – анализ взаимодействия генов в клинической генетике был сделан С. Н. Давиденковым (1934, 1947) по анализу полиморфизма заболеваний нервной системы.

6 этап – в медико-генетическом консультировании для составления прогноза без генеалогического метода обойтись нельзя. Выясняют гомо- или гетерозиготность родителей и рассматривают вероятность рождения детей с теми или иными признаками.

Близнецовый метод исследования

Исследование близнецов – один из основных методов генетики человека. Существуют однояйцевые близнецы, возникающие из одной яйцеклетки, оплодотворенной одним сперматозоидом. Возникают они из-за разделения зиготы на два генетически идентичных друг другу и всегда однополых зародыша.

Разнояйцовые близнецы развиваются из разных яйцеклеток, оплодотворенных разными сперматозоидами. Генетически они различаются как братья и сестры одних родителей.

При помощи близнецового метода можно изучить:

1) Роль наследственности и среды в формировании физиологических и патологических особенностей организма. В частности, изучение наследственной передачи людьми некоторых болезней. Изучение экспрессивности и пенетрантности генов, вызывающих наследственные заболевания.

2) Конкретные факторы, усиливающие или ослабляющие влияние внешней среды.

3) Корреляцию признаков и функций.

Особенно важна роль близнецового метода в изучении проблемы «генотип и среда».

Сравнивают обычно три группы близнецов: ДБ в одинаковых условиях, ОБ в одинаковых условиях, ОБ в разных условиях.

При изучении близнецов определяют частоту, степень совпадения (конкордантности) тех или иных признаков.

При изучении роли наследственности в происхождении того или иного признака производят расчет по формуле К. Хольцингера.

Коэффициент наследуемости - Н

Н= % сходства ОБ - % сходства РБ

100 - % сходства РБ

При Н=1 вся изменчивость в популяции обусловлена наследственностью.

При Н=0 вся изменчивость вызвана средовыми факторами. Влияние среды С выражается формулой:

где Н – коэффициент наследуемости. Например, конкордантность монозиготных (однояйцевых) близнецов 3%.

Тогда Н = 67 – 3 = 64 = 0,7 или 70 %. С = 100 – 70 = 30%

Итак, данный признак на 70% обусловлен наследственностью, а на 30% - влиянием факторов внешней среды.

Другой пример. Группы крови по системе АВО у ОБ =100%, т.е. полностью зависит от наследственности.

Частота совпадения групп крови и некоторых заболеваний у близнецов (в %)

Признаки или болезни

группы крови АВО
корь
коклюш
шизофрения
свинка
эпилепсия
Врожденный стеноз привратника

Метод дерматоглифики

Это наука, изучающая наследственную обусловленность рисунков, которые образуют линии кожи на кончиках пальцев, ладонях и подошвах человека.

Оказалось, что у каждого народа, у каждой расы, у каждого человека рисунки имеют свои особенности, и на ладонях они строго индивидуальны. На это впервые обратил внимание Ф. Гальтон, который предложил английской уголовной полиции по отпечаткам пальцев идентифицировать преступников.

Дерматоглифические исследования имеют важное значение в криминалистике, в определении зиготности близнецов, в диагностике ряда наследственных заболеваний, а так же в отдельных случаях спорного отцовства.

Ладонный рельеф очень сложен. В нем выделяют ряд полей, подушечек и ладонных линий. Подушечек на ладони 11, их делят на 3 группы:

1) пять концевых (эпликальных) подушечек на концевых фалангах пальцев.

2) четыре межпальцевые подушечки, располагаются против межпальцевых промежутков.

3) две ладонные проксимальные подушечки тенар и гипотенар. У основания большого пальца – тенар, у противоположного края ладони - гипотенар.

На наиболее возвышенных частях подушечек заметны кожные гребешки. Это линейные утолщения эпидермиса, которые представляют собой модифицированные чешуйки кожи. Кожные гребешки идут потоками, как на ладонях, так и на пальцевых подушечках. Точки встречи этих потоков образуют трирадиусы или дельты.

Гребешковые узоры обычно изучают под лупой. Отпечатки узоров, при помощи типографской краски, делают на чистой белой, лучше мелованной, бумаге или целлофане. Как на кончиках пальцев, так и на ладонных возвышениях могут наблюдаться различные папиллярные узоры в виде завитков, петель и дуг, открытых в ульпарную или радиальную стороны. На тенаре и гипотенаре чаще бывают дуги. На средней и основной фалангах пальцев гребешковые линии идут поперек пальцев, образуя различные узоры – прямые, серповидные, волнообразные, дугообразные и их сочетания. В среднем на одном пальце бывают 15-20 гребешков.

Рисунок ладони:

1 – поперечная проксимальная борозда, линия прижатия 4 пальцев

2 - поперечная средняя борозда, линия прижатия 3 пальцев

3 – поперечная дистальная борозда, линия прижатия 2 пальцев

4 – борозда большого пальца

5 – продольная срединная борозда от запястья к основанию 3го пальца

6 – продольная промежуточная борозда от запястья к основанию 4го пальца

7 – продольная ульнарная борозда, от запястья к основанию 5го пальца

1 – синдром Патау

2 – синдром Дауна

3 – синдром Шерешевского-Тернера

4 – норма

5 – синдром Клайнфельтера

При изучении кожного рельефа ладони исследуют:

1) Ход главных ладонных линий А, В, С, Д 1,2,3,4,5,6,7.

2) Ладонные узоры на тенаре и гипотенар.

3) Пальцевые узоры (форму узоров, гребневый счет)

4) Осевые трирадиусы.

Аналогичные исследования проводят и на подошвах ног. Направление главной ладонной линии Д у родителей и их детей одинаковое.

Изучение больных с хромосомными болезнями (болезнь Дауна, синдром Клайнфельтера) показало, что у них меняется не только рисунок пальцевых и ладонных узоров, но и характер основных сгибательных борозд на коже ладоней.

Несколько меньшую выраженность имеют дерматоглифические отклонения у больных с такими дефектами развития, как врожденные пороки сердца и магистральных сосудов, незаращения мягкого и твердого неба, верхней губы и т.д.

Установлены изменения в характере пальцевых и ладонных узоров при проказе, шизофрении, сахарном диабете, раке, ревматизме, полиомиелите и других заболеваниях.

Цитогенетический метод

Этот метод позволяет с помощью микроскопа исследовать структуры клетки – хромосомы. С помощью метода микроскопии изучен кариотип организма человека (хромосомный набор клеток организма). Установлено, что многие заболевания и дефекты развития связаны с нарушением числа хромосом и их строения. Этот метод позволяет изучить также действие мутагенов на состав и строение хромосом. Цитогенетический метод связан с временными культурами тканей (обычно лейкоцитов) и получением метафазных ядер с укороченными, утолщенными хромосомами, деление которых останавливают на стадии метафазной пластинки колхицином. Если в кариотипе изучаются половые хромосомы, то этот метод позволяет исследовать половой хроматин в соматических клетках.

Гибридизация соматических клеток

Гибридные клетки обладают определенными свойствами, позволяющими определять локализацию гена или сцепление гена. Потеря хромосом человека из некоторых типов гибридных клеток позволяет получать клоны с отсутствием определенной хромосомы. Наиболее употребительны гибриды соматических клеток человек – мышь.

Прослеживание за наличием биохимического генетического маркера в гибридных клонах по мере элиминации хромосом человека может привести к обнаружению локализации гена, если признак исчезает из клеток, как только они меняются определенными хромосомами. Цитогенетический анализ большого числа клонов и сопоставления результатов с присутствием большого числа генетических маркеров позволяет подметить сцепленные гены и их локализацию. Дополнительно используют информацию, при использовании клонов от инвалидов с транслокациями и другими хромосомными аномалиями.

Этим методом была установлена локализация гена фосфоглицераткиназы в длинном плече Х-хромосомы, т.е. место гибридных клеток позволяет установить:

1) локализацию гена

2)сцепление генов

3)картирование хромосом

Свыше 160 локусов определены с помощью метода гибридных соматических клеток.

Онтогенетический метод

Позволяет изучить закономерности проявления какого-либо признака или заболевания в процессе индивидуального развития. Выделяют несколько периодов развития человека. Антенатальный (развитие до рождения) и постнатальный. Большинство признаков человека формируются в фазу морфогенеза антенатального периода. В фазу морфогенеза постнатального периода заканчивается формирование коры головного мозга и некоторых других тканей и органов, формируется иммунологическая система организма, которая достигает наивысшего развития через 5-7 лет после рождения ребенка. В постморфогенетический период развиваются вторичные половые признаки.

В морфогенетический период изменение активности генов происходит по двум типам:

1) включение и выключение генов

2) усиление и ослабление действия генов

В постморфогенетический период развития первый тип изменения активности генов почти отсутствует, происходит лишь небольшое включение отдельных генов – например, генов, определяющих вторичные половые признаки, развитие некоторых наследственных заболеваний. Выключение же генов в этом периоде более значительное. Репрессируется активность многих генов, связанных с выработкой меланина (в результате происходит поседение), а также генов, связанных с выработкой γ-глобулинов (повышается восприимчивость к заболеваниям). Подавляются многие гены в клетках нервной системы, мышечных клетках и т.д.

Репрессия генов осуществляется на уровне транскрипции, трансляции, посттрансляции. Однако основной тип изменения активности генов на этом этапе – усиление и ослабление действия генов. Может изменяться доминирование генов, что вызывает изменение внешних признаков, особенно в период полового созревания. Меняется соотношение половых гормонов и соответственно признаки пола. Репрессивные гены с возрастом могут оказывать большое влияние на развитие того или иного признака. Например, ген фенилкетонурии в гетерозиготном состоянии изменяет психику человека.

Популяционно-статистический метод исследования

Представляет собой метод математического подсчета тех или иных генов и соответствующих признаков в определенных популяциях. Теоретической основой данного метода является закон Харди-Вайнберга.

Этим методом установлено, что все гены человеческой популяции по частоте встречаемости можно разделить на 2 категории:

1) имеющие универсальное распространение, к которым относится большинство генов. Например, ген дальтонизма, имеющийся у 7%мужчин и более чем у 13%женщин. Ген амавротической идиотии, встречающийся у населения Европы с частотой 4 на 10 000 населения.

2) гены, встречающиеся преимущественно в определенных районах. Например, ген серповидно-клеточной анемии распространен в странах, где свирепствует малярия. Ген врожденного вывиха бедра, имеющий высокую концентрацию у аборигенов северо-востока нашей страны.

Метод моделирования

Закон гомологических рядов Н. И. Вавилова (виды и роды генетически близкие обладают сходными рядами наследственной изменчивости) позволяет с определёнными ограничениями экстраполировать экспериментальные данные на человека.

Биологическая модель наследственного заболевания на животном часто является более удобной для исследования, чем больной человек. Оказалось, что у животных имеется около 1300 наследственных болезней, так же, как у человека. Например, у мышей – 100, у крокодилов – 50, у крыс – 30. на модели гемофилии А и В у собак показано, что она обусловлена рецессивным геном, расположенным в Х-хромосоме.

Моделирование мышечной дистрофии у мышей, хомяков и кур дало возможность понять патогенетическую сущность этого заболевания. Было установлено, что при этом заболевании поражается не нервная система, а непосредственно мышечные волокна.

Начальные механизмы галактоземии были выяснены на модели кишечной палочки. И у человека, и у бактерий неспособность усваивать галактозу вызвана одинаковым наследственным дефектом – отсутствием активного фермента – галактоза-1-фосфатилуридилтрансферазы.

Иммунологический метод исследования

Этот метод основан на изучении антигенного состава клеток и жидкостей человеческого организма – крови, слюны, желудочного сока и т.п. Чаще всего исследуют антигены форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов, а также белков крови. Различные виды антигенов эритроцитов образуют системы групп крови.

В начале ХХ столетия К. Ландштейнер и Я. Янский показали, что в зависимости от характера реакций между эритроцитами и плазмой крови, всех людей можно разделить на 4 группы. В дальнейшем было доказано, что реакции эти происходят между белковыми веществами эритроцитов, которые были названы агглютино-генами, и белками сыворотки крови, которые были названы агглютининами.

Группы крови определяются антигенами, содержащими липидную и белковые фракции, и которые находятся на поверхности эритроцитов. Белковая часть антигена контролируется геном, который работает на ранних этапах развития эритроцита. Антигены специфичны для каждой группы крови.

Всего сейчас известно 14 систем эритроцитарных групп крови, в которые входят более 100 различных антигенов. В системе групп крови АВО на поверхности эритроцитов формируется два антигена под контролем генных аллелей I а, I в.

Бернштейн в 1925 году показал, что есть третья аллель I о, которая не контролирует синтез антигена. Таким образом, в системе АВО групп крови существует три аллеля, но у каждого человека имеется только два из них. Если расписать возможные мужские и женские гаметы в решетке Пеннета, то можно проследить, какие возможные комбинации групп крови будут у потомков.

Группы крови АВО у потомков в зависимости от групп крови у родителей

Иммунологические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные состояния (агаммаглобулинемия, дисгаммаглобулинемия, атаксия-телеангиэктазия и другие), при подозрении на антигенную несовместимость матери и плода, при пересадке органов и тканей, при установлении истинного родства, в случаях медико-генетического консультирования, при необходимости изучения генетических маркеров при диагностике сцепления генов или при определении наследственной предрасположенности к заболеваниям, при установлении зиготности близнецов.

Определение групповой принадлежности крови имеет практическое значение в разнообразных генетических исследованиях:

1) при установлении зиготных близнецов

2) при установлении сцепления генов.

3) в судебно-медицинской экспертизе в случаях спорного отцовства или материнства. Известно, что у ребенка не могли появится антигены, которых нет у родителей.

Система групп крови М была открыта К. Ландштейнером и И. Левиным в 1927 году (в этой группе антитела к соответствующим антигенам не продуцируются). В системе имеется два аллеля M,N.

Гены, определяющие фактор М и N, являются кодоминантными, т.е. если встречаются вместе, то оба и проявляются. Таким образом, существуют гомозиготные генотипы MM и NN, и гетерозиготные MN. В популяциях европейцев генотипы ММ встречаются примерно в 36%, NN – в 16%, MN – в 48%.

А гены соответственно:

М=36 + 48/2 = 60%

N=16 + 48/2 = 40%

Резус-фактор

Как показали исследования ученых, 85% европейцев имеют эритроцитарный антиген, общий с антигеном обезьян вида макака-резус. У 15% людей резус-антигенов на поверхности эритроцитов нет.

Система групповых резус-антигенов очень сложна. Предполагается, что резус-антигены контролируются тремя тесно сцепленными локусами С, Д и Е в двух хромосомах и наследуются доминантно. Поэтому возможны по каждому локусу три генотипа: гомозиготные резус-положительные, гетерозиготные резус-положительные и гомозиготные резус-отрицательные.

Наиболее иммуногенным является антиген Д. Антигены С и Е являются менее активны.

В 1962 году было установлено наличие эритроцитарного изоантигена Х д, передающегося через половую Х-хромосому. По этому антигену всех людей можно разделить на Х д -положительных и Х д -отрицательных. Среди Х д -положительных женщин встречается 88%, а среди мужчин – 66%. Если оба родителя Х д -отрицательны, то все их дети (как девочки, так и мальчики) будут Х д -отрицательны. Если отец Хд-положительный, а мать Х д -отрицательна, то их дочери будут Х д -положительными, а сыновья Х д -отрицательными. Если мать Х д -положительна, а отец Х д -отрицателен, то их сыновья будут Х д -положительными т.е. тип наследования «крест-накрест». Дочери же могут быть как Хд-положительными, так и Х д -отрицательными, в зависимости от гомозиготности матери. Ген Х д – группы локализован в коротком плече Х-хромосомы. Система Х д используется для изучения анеуплоидий (аномального числа Х-хромосом у ребенка с трисомией Х, синдрома Клайнфельтера, синдрома Шерешевского-Тернера и др.). Предполагается, что Х д -несовместимость матери и плода (мать Х д -отрицательная, а плод Х д -положительный) приводит к уменьшению частоты рождения девочек.

Биохимический метод

Позволяет, с одной стороны, изучить количество ДНК в клетках человека в норме и патологии, с другой – определять наследственные дефекты обмена веществ при помощи:

1) определения аномального белка (структурных белков или ферментов), которые образуются в результате биохимических реакций;

2) определения промежуточных продуктов обмена, которые появляются вследствие генетического блока прямой реакции обмена.

Например, при фенилкетонурии аминокислота фенилаланин не превращается в тирозин. Происходит увеличение её концентрации в крови и уменьшение концентрации тирозина. Фенилаланин при этом превращается в фенилпировиноградную кислоту и ее производные – фенилмолочную, фенилуксусную и фенилацетилглутаминовую.

Эти соединения обнаруживают в моче больного при помощи хлорного железа FeCl 3 или 2,4 – динитрофенилгидразина.



1. Генеалогический метод.

Метод основан на прослеживании какого-либо признака в ряде поколений с указанием родственных связей (составление родословной).

Сбор сведений начинается от пробанда.

Пробанд - лицо, родословную которого необходимо составить. Братья и сестры пробанда называются сибсы.

Метод включает два этапа:

1. Сбор сведений о семье.

2. Генеалогический анализ.

Для построения родословной применяются специальные символы. Методы позволяют установить тип наследования признака: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с полом.

При аутосомно-доминантном наследовании ген проявляется в гетерозиготном состоянии у лиц обоих полов; сразу в первом поколении; большое количество больных, как по вертикали, так и по горизонтали. По такому типу наследуются веснушки, брахидактилия, катаракта, хрупкость костей, хондродистрофическая карликовость, полидактилия.

При аутосомно-рецессивном наследовании мутационный ген проявляется только в гомозиготном состоянии у лиц обоего пола. Как правило, у здоровых родителей (ген в гетерозиготном состоянии) рождаются больные дети. Признак проявляется не в каждом поколении. Так наследуются признаки: Леворукость, рыжие волосы, голубые глаза, миопатия, сахарный диабет, фенилкетонурия.

При Х-сцепленном доминантном наследовании болеют лица обоего пола, чаще встречается у женщин. Так наследуются признаки: пигментный дерматоз, кератоз (потеря волосяного покрова), пузырчатость стоп ног, коричневая эмаль зубов.

При Х-сцепленном рецессивном наследовании больны в основном лица мужского пола. В семье больна половина (50%) мальчиков 50% девочек гетерозиготны по мутантному гену. Так наследуется гемофилия А, мышечная дистрофия Дюшена, дальтонизм.

При У-сцепленном наследовании больны только мужчины. Такие признаки называются голандрические: синдактилия, гипертрихоз.

2. Цитогенетический метод.

Метод основан на микроскопическом исследовании хромосом, анализе кариотипа человека в норме и патологии. Изучение хромосомного набора проводят на метафазных пластинках лимфоцитов, фибробластов, культивируемых в искусственных условиях. Анализ хромосом проводят методом микроскопирования. Для идентификации хромосом проводят морфометрический анализ длины хромосомы и соотношение их плеч (центромерный индекс), затем проводят кариотипирование по Денверской классификации. Этот метод позволяет установить наследственные болезни человека, и структуры хромосом, транслокации, строить генетические карты.

В 1969 году Т. Касперсон разработал метод дифференцированного окрашивания хромосом, который позволил идентифицировать хромосомы по характеру распределения окрашиваемых сегментов. Разнородность ДНК в разных участках по длине хромосомы обуславливает разное окрашивание сегментов (гетеро - и эухроматиновые участки). Этот метод позволяет выявлять анеуплоидии, хромосомные перестройки, транслокации, полиплоидии (трисомии по 13- й, 18- й, 21- й - аутосомами; делеции). Делеции по 5- й хромосоме формируют синдром «кошачьего крика»; по 18- й - нарушение формирования скелета и умственную отсталость.

Если нарушение касаются половых хромосом, то применяется метод исследования полового хроматина. Половой хроматин (тельце Барра) - это спирализованная Х-хромосома, которая инактивируется у женского организма на 16-е сутки эмбрианального развития. Тельце Барра имеет дисковидную форму и обнаруживается в интерофазных клеточных ядрах млекопитающих и человека под ядерной мембраной. Половой хроматин может быть определен в любых тканях. Чаще всего исследуются эпителиальные клетки слизистой оболочки щеки (буккальный соскоб).

В кариотипе нормальной женщины имеются две Х-хромосомы, и одна из них образует тельце полового хроматина. Количество телец полового хроматина у человека и других млекопитающих на единицу меньше, чем число Х-хромосом особи. У женщины с кариотипом ХО - ядра клеток не содержат полового хроматина. При трисомии (ХХХ)- образуется 2 тельца, т.е. с помощью полового хроматина определить количество половых хромосом в мазках крови, в ядрах нейтрофилоцитов тельца полового хроматина имеют вид барабанных палочек, отходящих от ядра лейкоцитов.

В норме у женщин хроматин - положительные ядра составляют 20-40%, у мужчин - 1-3%. В буккальном эпителии можно определить и У-хроматин. Он представляет собой интенсивно светящийся большой хромоцентр, расположенный в любой точке ядра. В норме у лиц мужского пола 20-90% ядер содержат У-хроматин.

3. Популяционно-статистический метод.

Метод позволяет рассчитать частоту гетерозиготного носительства патологического гена в человеческих популяциях. Распределение генных и хромосомных аномалий. Метод использует демографические и статистические данные, математическая обработка которых основана на законе Харди-Вайнберга.

Исследование частоты распределения генов имеет важное значение для анализа распространения наследственных болезней человека. Известно, что подавляющее число рецессивных аллелей представлено в гетерозиготном состоянии. Закон Харди-Вайнберга позволяет выявить частоту носительства патологического гена. Например: частота встречаемого альбинизма (аq 2) составляет 1:20000, т.е. q 2 aa = 1/20000,значит q = √ 1/20000 = 1/141

p + q = 1, значит p = 1- q = 1 1/141= 140/141; частота гетерозигот (носителей гена альбинизма) 2 pq Aa = 2 х140/141 х 1/141 = 1/70.

4. Близнецовый метод.

Метод основан на изучении признаков изменяющихся под влиянием условий жизни у моно - и дизиготных близнецов. При генетических исследованиях близнецов необходимо сравнительно изучать оба типа. Только так можно оценить влияние разных условий среды на одинаковые генотипы (у монозигот), а также проявление разных генотипов в одинаковых условиях среды (у дизигот).

Сходство признаков у близнецов называется конкордантность, различия признаков - дискордантность. Сравнение степени сходства у двух групп близнецов позволяет судить о роли наследственности и среды в патологические признаки. Метод основан на сравнительном изучении признаков близнецов. Он позволяет выявить перечень болезней с наследственной предрасположенностью, определить роль среды и наследственности в проявлении болезни. Для этого используют коэффициент наследственности (Н) и влияние среды (Е), которые вычисляют по формуле Хольцингера:

Н =(%MZ - %DZ/100 - %DZ) х 100

MZ - конкордартность монозиготных близнецов, DZ - дизиготных.

Если значение Н = 1, признак в большей степени (100%) формируется под влиянием наследственных факторов; Н = 0 - на признак влияет действие среды (100%); Н = 0,5 - одинаковая степень влияние среды и наследственности.

Например: конкордантность монозиготных близнецов по заболеваемости шизофренией равна 70%, а дизиготных 13%. Тогда Н = 70-13 / 100-13 = 57/87= 0,65 (65%). Следовательно преобладание наследственности - 65%, а среды - 35%.

При помощи метода изучают:

1. Роль наследственности и среды в формировании признаков организма;

2. Конкретные факторы, усиливающие или ослабляющие влияние внешней среды;

3. Корреляцию признаков и функций;

5. Биохимические методы.

Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов (генные мутации). С помощью этих методов обнаружено около 500 молекулярных болезней.

При различных типах заболеваний удается определить либо сам аномальный белок- фермент, либо промежуточные продукты обмена.

Методы включают несколько этапов:

1) Выявление на простых, доступных методиках (экспресс-методах), качественных реакциях продуктов обмена в моче, крови.

2) Уточнение диагноза. Для этого используются точные хроматографические методы определения ферментов, аминокислот, углеводов и т.д.

3) Применение микробиологических тестов, основанных на том, что некоторые штаммы бактерий могут расти на средах, содержащих только определенные аминокислоты, углеводы. Если в крови или моче есть требуемое для бактерии вещество, то на таком приготовленном субстрате наблюдается активное размножение бактерий, чего не бывает у здорового человека.

Биохимическими методами выявляются гемоглобинопатии, болезни нарушения обмена аминокислот (фенилкентонурия, алкаптонурия), углеводов (сахарный диабет, галактоземия), липидов (амавротическая идиотия), меди (болезнь Коновалова-Вильсона), железа (гемохроматозы) и др.

6. Метод дерматоглифики.

Дерматоглифика - раздел генетики, изучающий наследственные обусловленные рельефы кожи на пальцах, ладонях и подошв стоп. На этих частях тела имеются эпидермальные выступы - гребни, которые образуют сложные узоры. Рисунки кожных узоров строго индивидуальны и генетически обусловлены. Процесс образования капиллярного рельефа происходит в течение 3-6 месяцев внутриутробного развития. Механизм образования гребней связан с морфогенетическими взаимоотношениями между эпидермисом и нижележащими тканями.

Гены, обеспечивающие формирование узоров на подушечках пальцев, участвуют в регуляции насыщения жидкостью эпидермиса и дермы.

Ген А - обуславливает появление дуги на пальцевой подушечке, ген W - появление завитка, ген L - появление петли. Таким образом, выделяют три основных типа узоров на подушечках пальцев (рис. 5.5). Частота встречаемости узоров: дуги - у 6%, петли - около 60%, завитки - 34%. Количественным показателем дерматоглифики является гребневой счет (число папиллярных линий между дельтой и центром узора; дельта - пункты сближения папиллярных линий, образующих фигуру в виде греческой буквы дельта Δ).

В среднем на одном пальце бывает 15 - 20 гребней, на 10-ти пальцах у мужчин – 144,98; для женщин - 127,23 гребней.

Ладонный рельеф (пальмоскопия) более сложный. В нем выявляют ряд полей подушечек и ладонных линий. У оснований II, III, IY, Y пальцев находятся пальцевые трирадиусы (а, в, с, д), у основания ладони - ладонный (t). Ладонный угол - a t d в норме не превышает 57 0 (рис.5.6).

Кожные узоры наследственно обусловлены. Гребневой рельеф кожи наследуется полигенно.

На формирование дерматоглифических узоров могут оказывать некоторые повреждающие факторы на ранних стадиях эмбриогенеза (например, внутриутробное действие вируса краснухи дает отклонение в узорах сходные с болезнью Дауна).

Метод дерматоглифики используется в клинической генетике в качестве дополнительного подтверждения диагноза хромосомных синдромов с изменением кариотипа.

7. Иммунологические методы.

Методы основаны на изучении антигенного состава клеток и жидкостей организма - крови, слюны, желудочного сока. Чаще всего используют антигены эритроцитов, лейкоцитов, а также белков крови. Различные виды антигенов эритроцитов образуют системы групп крови - АВ0, Rh - фактор. Знание особенностей иммуногенетики крови необходимо при переливании крови.

8. Онтогенетический метод.

Онтогенетический метод позволяет изучать закономерности проявления признаков в процессе развития. Целью метода является ранняя диагностика и профилактика наследственных заболеваний. Метод основан на биохимических, цитогенетических и иммунологических методах. На ранних стадиях постнатального онтогенеза проявляются такие заболевания как фенилкетонурия, галактоземия, Витамин -Д- резистентный рахит, своевременная диагностика которых способствует профилактическим мероприятиям, снижающих патологию заболеваний. Такие заболевания как сахарный диабет, подагра, алкаптонурия проявляются на более поздних стадиях онтогенеза. Особое значение метод имеет при изучении активности генов, находящихся в гетерозиготном состоянии, что позволяет выявлять рецессивные сцепленные с Х-хромосомой заболевания. Гетерозиготное носительство выявляется с помощью изучения симптомов заболевания (при анофтальмии - уменьшение глазных яблок); с помощью нагрузочных тестов (повышенное содержание фенилаланина в крови у больных фенилкетонурией); с помощью микроскопического исследования клеток крови тканей (скопление гликогена при гликогенозах); с помощью прямого определения активности генов.

9. Метод генетики соматических клеток.

Основан на изучении наследственного материала в клонах клеток из тканей, выращенных вне организма на питательных средах. В этом случае можно получить гены в чистом виде, получить клетки-гибриды. Это позволяет провести анализ сцепления генов и их локализацию, механизмы взаимодействия генов, регуляции активности генов, генные мутации.

Использование методов антропогенетики позволяет своевременно установить диагноз наследственного заболевания.



Специфические методы генетики.

1. Гибридологический метод (открытый Менделем). Основные черты метода:

А). Мендель учитывал не весь многообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным признакам (одному или нескольким);

Б) Менделем был проведен точный количественный учет наследования каждого признака в ряду последующих поколений. .

В) Менделем исследовался характер потомства каждого гибрида в отдельности.

2. Генеалогический метод. В основу метода положено составление и анализ родословных,

Неспецефические методы генетики.

1. Близнецовый метод. Используется прежде всего для оценки соотносительной рол» наследственности и средаг в развитии признака.

2. Цитогенетический метод. Заключается в изучения хромосом с помощью микроскопа.

3. Лопулщионюай метод. Позволяет изучить распространение отдельных генов или хромосомных аномалий в популяциях:

4. Мутационный метод. Метод обнаружения мутаций в зависимости от особенностей объект» - главным образом способа размножения организма.

5. Рекомбинационный метод. Основан на частоте рекомбинаций между отдельными ларами генов, представленных в одной хромосоме. Позволяет составлять карты хромосом, на которых указывается относительное расположение различных генов.

6. Метод селективных проб (биохимический). С помощью него устанавливают последовательность аминокислот в полипептидной цепи и таким образом определяют генные мутации.

Генеалогический метод.

Основные закономерности наслед­ственности, установленные для живых организмов, универсальны и в полной мере справедливы и для человека. Вместе с тем как объект генетических исследований человек имеет свои пре­имущества и недостатки.

Для людей невозможно планиро­вать искусственные браки. Еще в 1923 г. Н.К. Кольцов отмечал, что "...мы не мо­жем ставить опыты, мы не можем за­ставить Нежданову выйти замуж за Шаляпина только для того, чтобы по­смотреть, какие у них будут дети". Од­нако эта трудность преодолима благо­даря прицельной выборке из большого числа брачных пар тех, которые соот­ветствуют целям данного генетическо­го исследования.

В значительной мере затрудняет возможности генетического анализа человека большое число хромосом - 2п=4б. Однако разработка новейших методов работы с ДНК, метода гибри­дизации соматических клеток и неко­торых других методов устраняют эту трудность.

Из-за небольшого числа потомков (во второй половине XX в. в большин­стве семей рождалось по 2-3 ребенка) невозможен анализ расщепления в по­томстве одной семьи. Однако в боль­ших популяциях можно выбрать се­мьи с интересующими исследователя признаками.

Гибридологический способ.

Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам его потомков, полученных при определенных скрещиваниях. Основы этого метода были заложены работами Г. Менделя. Мендель скрещивал между собой сорта гороха, различающиеся теми или иными признаками (формой и окраской семян, окраской цветков, высотой стебля и др.), а затем следил, как наследуются признаки того и другого родителя их потомками в первом, втором и последующих гибридных поколениях. Проделав эту работу на достаточно большом количестве растений, Г.Мендель смог установить очень важные статистические закономерности количественного соотношения гибридных растений, обладающих признаками того и другого исходного сорта.

Позднее аналогичные исследования были осуществлены очень многими генетиками на различных Менделем на горохе, имеют общебиологическое значение, так как подтверждаются на самых разнообразных объектах.

Наиболее простой тип скрещивания при гибридологическом анализе - моногибридное скрещивание, когда родительские формы различаются между собой только одной парой признаков. Примером моногибридного скрещивания может служить скрещивание между желтозерным и зеленозерным сортами гороха, проведенное Менделем. Для изложения его результатов воспользуемся обозначениями, принятыми в генетике: Р - родительские формы (сорта); F1- гибриды первого поколения; - гибриды второго поколения (F3 - третьего, F4 - четвертого и т. д.); X-знак скрещивания; ↓ - знак, свидетельствующий о том, что следующее поколение получено путем самоопыления; А, а - две буквы, обозначающие пару контрастирующих признаков, которыми различаются родительские формы, взятые в скрещивание (в нашем случае А - желтая и а - зеленая окраска семян гороха).

Мендель получил такие результаты при моногибридном скрещивании между желтозерным и зеленозерным горохом:

Р: А x а
F1: А
F2: ЗА:1а

Эти результаты были обобщены Менделем в следующих трех положениях: правило единообразия первого гибридного поколения; закон расщепления второго гибридного поколения; гипотеза чистоты гамет.

Молекулярно-генетические методы.

Конечный итог молекулярно-генетических методов - выявление изме­нений в определенных участках ДНК, гена или хромосомы. В их основе ле­жат современные методики работы с ДНК или РНК. В 70-80 гг. в связи с прогрессом в молекулярной генетике и успехами в изучении генома человека молекулярно-генетический подход на­шел широкое применение.

Начальным этапом молекулярно-генетического анализа является получе­ние образцов ДНК или РНК. Для это­го используют геномную ДНК (вся

ДНК клетки) или отдельные ее фраг­менты. В последнем случае, чтобы по­лучить достаточное количество таких фрагментов, необходимо, амплифицировать (размножить) их. Для этого пользуются полимеразной цепной ре­акцией - быстрым методом фермента­тивной репликации определенного фрагмента ДНК. С его помощью мож­но амплифицировать любой участок ДНК, расположенный между двумя известными последовательностями.

Анализировать огромные молекулы ДНК в том виде, в котором они суще­ствуют в клетке, невозможно. Поэтому прежде их необходимо разделить на части, обработать разнообразными рестриктазами - бактериальными эндонуклеазами. Эти ферменты способны разрезать двойную спираль ДНК, при­чем места разрыва строго специфичны для данного образца.

Биохимический метод.

Причиной многих врожденных на­рушений метаболизма являются различные дефекты ферментов, возника­ющие вследствие изменяющих их структуру мутаций. Биохимичские по­казатели (первичный продукт гена, на­копление патологических метаболитов внутри клетки и во всех клеточных жидкостях больного) более точно от­ражают сущность болезни по сравне­нию с показателями клиническими, поэтому их значение в диагностике на­следственных болезней постоянно воз­растает. Использование современных биохимических методов (электрофо­реза, хроматографии, спектроскопии и др.) позволяют определять любые ме­таболиты, специфические для кон­кретной наследственной болезни.

Предметом современной биохими­ческой диагностики являются специ­фические метаболиты, энзимопатии, различные белки.

Объектами биохимического анализа могут служить моча, пот, плазма и сы­воротка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты).

Для биохимической диагностики ис­пользуются как простые качественные реакции (например, хлорид железа для выявления фенилкетонурии или динитрофенилгидразин для выявления кетокислот), так и более точные методы.

Метод генетики соматических клеток.

Тот факт, что соматические клетки несут в себе весь объем генетической информации, дает возможность изучать на них генетические закономер­ности всего организма.

Основу метода составляет культиви­рование отдельных соматических кле­ток человека и получение из них клонов, а так же их гибридизацию и селекцию.

Соматические клетки обладают ря­дом особенностей:

Быстро размножаются на питатель­ных средах;

Легко клонируются и дают генети­чески однородное потомство;

Клоны могут сливаться и давать ги­бридное потомство;

Легко подвергаются селекции на специальных питательных средах;

Клетки человека хорошо и долго сохраняются при замораживании.

Соматические клетки человека по­лучают из разных органов - кожи, костного мозга, крови, ткани эмбрионов. Однако чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови.

С помощью метода гибридизации соматических клеток:

а) изучают метаболические процес­сы в клетке;

б) выявляют локализацию генов в хромосомах;

в) исследуют генные мутации;

г) изучают мутагенную и канцеро­генную активность химических ве­ществ.

Цитогенетический метод.

Основа метода - микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. XX в. для изучения морфологии хромосом человека, подсчета хромосом, культи­вирования лейкоцитов для получения метафазных пластинок.

Развитие современной цитогенетики человека связано с именами цито­логов Д.Тио и А.Левана. В 1956 г. они первыми установили, что у человека 46 (а не 48, как думали раньше) хромо­сом, что положило начало широкому изучению митотических и мейотических хромосом человека.

В 1959 г. французские ученые Д. Лежен, Р.Тюрпен и М. Готье устано­вили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у че­ловека. Цитогенетика стала важней­шим разделом практической медици­ны. В настоящее время цитогенетиче­ский метод применяется для диагнос­тики хромосомных болезней, состав­ления генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека.

В 1960 г. в г. Денвере (США) была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки - центромеры.

Популяционно-статистический метод.

Одним из важных направлений в современной генетике является популяционная генетика. Она изучает ге­нетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и из­менение генетической структуры по­пуляций. Под популяцией в генетике понимается совокупность свободно скрещивающихся особей одного ви­да, занимающих определенный ареал и обладающих общим генофондом в ряду поколений. (Генофонд - это вся совокупность генов, встречающихся у особей данной популяции).

В медицинской генетике популяционно-статистический метод использу­ется при изучении наследственных бо­лезней населения, частоты нормаль­ных и патологических генов, геноти­пов и фенотипов в популяциях раз­личных местностей, стран и городов. Кроме того, этот метод изучает законо­мерности распространения наследст­венных болезней в разных по строе­нию популяциях и возможность про­гнозировать их частоту в последую­щих поколениях.

Популяционно-статистический ме­тод используется для изучения:

а) частоты генов в популяции, вклю­чая частоту наследственных болезней;

б) закономерности мутационного процесса;

Близнецовый метод.

Это метод изучения генетических закономерностей на близнецах. Впер­вые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает воз­можность определить вклад генетиче­ских (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкрет­ных признаков или заболеваний у че­ловека.

При использовании близнецового метода проводится сравнение:

1) монозиготных (однояйцевых) близнецов - МБ с дизиготными (раз­нояйцевыми) близнецами - ДБ;

2) партнеров в монозиготных парах между собой;

3) данных анализа близнецовой вы­борки с общей популяцией.

Монозиготные близнецы образуют­ся из одной зиготы, разделившейся на стадии дробления на две (или более) части. С генетической точки зрения они идентичны, т.е. обладают одинако­выми генотипами. Монозиготные близнецы всегда одного пола.

Особую группу среди МБ составля­ют необычные типы близнецов: двух­головые (как правило нежизнеспособ­ные), каспофаги ("сиамские близне­цы"). Наиболее известный случай - родившиеся в 1811 г. в Сиаме (ныне Таиланд) сиамские близнецы - Чанг и Энг. Они прожили 63 года, были же­наты на сестрах-близнецах.

СОДЕРЖАНИЕ: 1. Методы изучения генетики человека Все генетические законы и закономерности универсальны и приложимы к человеку. Однако изучение генетики человека имеет ряд особенностей. Во-первых, нельзя использовать гибридологический метод, так как экспериментальное скрещивание людей невозможно. Во-вторых, у человека медленная смена поколений, и пронаблюдать характер наследования признака сложно.

1. Методы изучения генетики человека

Все генетические законы и закономерности универсальны и приложимы к человеку. Однако изучение генетики человека имеет ряд особенностей. Во-первых, нельзя использовать гибридологический метод, так как экспериментальное скрещивание людей невозможно. Во-вторых, у человека медленная смена поколений, и пронаблюдать характер наследования признака сложно. В-третьих, у человека очень малое число потомков в одной семье, что не дает статистически достоверного результата. Кроме того, в отличие от классических генетических объектов у человека большое число хромосом и много групп сцепления. Поэтому для изучения генетики человека используются специфические методы, а характер наследования того или иного признака определяется на больших человеческих популяциях.

Основные методы изучения генетики человека:

· генеалогический;

· близнецовый;

· цитогенетический метод;

· биохимический метод;

· популяционно-статистический метод;

· молекулярно-генетические методы.

Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Впервые этот метод был предложен Ф. Гальтоном в 1865 г. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников. При составлении родословной используются специальные символы.

Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

Именно генеалогическим методом удалось определить характер наследования гемофилии. Исследование родословной британского королевского дома показало, что признак является рецессивным и сцеплен с полом. Носителем рецессивного гена оказалась британская королева Виктория.

Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, тип наследования признака. При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.

Генеалогические исследования показали, что некоторые способности человека – музыкальность, математический склад ума – также определяются наследственными факторами. Генеалогическим методом доказано наследование у человека сахарного диабета, глухоты, шизофрении, слепоты. Этот метод используется для диагностики наследственных заболеваний и медико-генетического консультирования. По характеру наследования определяется вероятность рождения ребенка с генетическими аномалиями.

Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Этот метод в 1876 г. предложил английский исследователь Ф. Гальтон для разграничения влияния наследственности и среды на развитие различных признаков у человека.

Среди близнецов выделяются однояйцевые и двуяйцевые. Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов.

Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.

Хромосомные мутации связаны с изменением числа или структуры хромосом. Из них под микроскопом при специальном окрашивании хорошо выявляются транслокации, делеции, инверсии. При транслокации или делеции хромосомы соответственно увеличиваются или уменьшаются в размере. А при инверсии меняется рисунок хромосомы (чередование полос).

Хромосомные мутации

Изменения числа хромосом:

· гаплоидия – уменьшение числа хромосом на полный набор (2n>n);

· полиплоидия – увеличение числа хромосом на один или несколько наборов хромосом (2n> 3n, 4n и т.д.);

· гетероплоидия, или анеуплоидия, – изменение числа хромосом на одну или несколько хромосом в отдельных парах хромосом (трисомия – 2n+1, моносомия – 2n-1, нулисомия – 2n-2).

Изменения структуры хромосом (хромосомные аберрации):

· делеция (нехватка) – потеря участка хромосомы (ABCDEF > ABvDEF);

· дупликация – удвоение участка хромосомы (ABCDEF > ABBCDEF);

· инверсия – поворот участка хромосомы на 180° (ABCDEF > ABEDCF);

· транслокация – обмен участками между негомологичными хромосомами (ABCDEF – OPRS > ABCRS – OPDEF).

Причинами хромосомных мутаций чаще всего бывают нарушения мейоза (нарушения кроссинговера, расхождения хромосом и хроматид). Нерасхождение хроматид при митозе также может приводить к изменению числа хромосом в дочерних клетках. Кроме того, мутагены и особенно излучение вызывают разрывы хромосом и нарушения процесса мейоза.

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Биохимический метод основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

Закон Харди–Вайнберга (известный также как закон генетического равновесия) – одна из основ популяционной генетики. Закон описывает распределение генов в популяции. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов.

Харди Годфри Харолд (1877–1947), английский математик, родился в Кранли, графство Суррей. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете.

Вайнберг Вильгельм (1862–1937), немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3 500 младенцам, в том числе, по крайней мере, 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству.

Молекулярно-генетические методы. В последние годы уровень развития современной генетики позволяет широко использовать молекулярные методы для изучения молекулярных основ наследственности и изменчивости организмов, химической и физико-химической структуры генетического материала, его функций.

Изучение генетики человека позволяет диагностировать, лечить и предсказывать вероятность генетической аномалии. В настоящее время изучен характер наследования около 2 000 признаков. Для профилактики и прогнозирования вероятности генетического заболевания созданы медико-генетические консультации.

2. Наследственные заболевания человека

С генетической точки зрения наследственные заболевания представляют собой мутации в половых и соматических клетках. Все наследственные болезни человека принято делить на три группы:

· генные болезни,

· болезни с наследственной предрасположенностью,

· хромосомные.

Генные болезни связаны с мутациями отдельных генов за счет преобразования химической структуры ДНК – изменения последовательности нуклеотидов ДНК, выпадения одних и включения других. Это, в свою очередь, изменяет образующуюся на ДНК молекулу РНК и обусловливает синтез нового нетипичного белка, что приводит к появлению у организма новых свойств. В результате генной мутации повреждается один ген, поэтому такие наследственные заболевания называют моногенными. К ним относится большинство наследственных аномалий обмена веществ, таких как фенилкетонурия (нарушение обмена аминокислоты фенилаланина, приводящее впоследствии к развитию слабоумия), галактоземия (нарушение обмена молочного сахара лактозы, что приводит к отставанию физического и умственного развития), гипотиреоз (врожденное нарушение функции щитовидной железы) и т.д. К генным мутациям относятся также гемофилия, дальтонизм, серповидно-клеточная анемия, полидактилия, синдром Марфана (поражение соединительной ткани, высокий рост, удлинение конечностей, «паучьи пальцы») и др.

Генные, или точковые, мутации затрагивают структуру генов, т.е. происходит нарушение последовательности нуклеотидов в молекуле ДНК, а значит, изменяется генетическая информация, записанная в генетическом материале. Это вызывает нарушения в структурах молекул РНК и белков, а также в осуществлении процесса синтеза белка, что, в свою очередь, почти всегда приводит к изменению признаков организма. Наименьший участок молекулы ДНК, способный мутировать, называется мутон, он составляет одну пару нуклеотидов. Генные мутации часто происходят под влиянием химических мутагенов и являются результатом нарушения процесса репликации.

Обратная мутация – это мутация, которая приводит к полному восстановлению повреждения, т.е. к восстановлению исходной последовательности нуклеотидов в молекуле ДНК. Такие мутации в природе происходят очень редко.

Супрессорная мутация – при такой мутации в мутантном гене или в каком-то другом гене происходят изменения, обеспечивающие восстановление фенотипа организма, а исходное повреждение генетического материала (нарушение последовательности нуклеотидов в молекуле ДНК) сохраняется.

Мутационная изменчивость приводит к появлению новых генов (новых аллелей), новой структуры и числа хромосом и тем самым создает материал для отбора. Для отдельных особей мутации в основном имеют отрицательное значение, т.к. часто приводят к появлению заболеваний, снижению жизнеспособности или гибели. Индукция мутаций широко используется в селекционной работе.

В зависимости от того, в каких хромосомах локализованы гены, и характера аллеля (доминантный или рецессивный) выделяют:

· аутосомно-доминантные болезни (ахондроплазия – самая распространенная форма карликовости);

· аутосомно-рецессивные (фенилкетонурия – нарушение аминокислотного обмена);

· болезни, обусловленные генами половых хромосом (Х-хромосомы), которые также могут быть связаны с доминантными (дефект эмали зубов, полное или частичное отсутствие зубов) и рецессивными (гемофилия, дальтонизм) генами.

Все моногенные болезни наследуются в соответствии с законами Менделя и по типу наследования делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х-хромосомой.

3. Генетические карты человека

Построение генетических карт – неотъемлемая часть детального генетического изучения любого вида. Успехи в построении генетических карт человека до середины 1970-х гг. были весьма скромными в связи с ограниченной возможностью применения классического метода. Ситуация резко изменилась в последующие годы, когда создание детальных генетических карт человека новыми методами шло с большим ускорением. В настоящее время установлено положение многих сотен генов на соответствующих хромосомах. Чрезвычайно интенсивно изучается молекулярная структура хромосом.

4. Лечение и предупреждение некоторых наследственных болезней человека

Интерес, проявляемый учеными всего мира к наследственности человека, не случаен. В последние десятилетия человечество тесно соприкасается с чуждыми для него химическими веществами. Число таких веществ, применяемых в быту, сельском хозяйстве, пищевой, фармакологической, косметической промышленности и в других областях деятельности людей, в настоящее время огромно. Среди этих веществ есть и такие, которые вызывают мутации.

Благодаря развитию медицины человек научился бороться с очень многими заболеваниями. Он успешно защищает себя от большинства очень опасных инфекционных заболеваний: оспы, чумы, холеры, малярии и др.

Частота хромосомных мутаций у человека велика и является причиной нарушений (до 40 %) у новорожденных. Кроме упоминавшихся хромосомных болезней существует множество других, обычно приводящих к тяжелым последствиям, а чаще – к гибели эмбриона. В большинстве случаев хромосомные мутации возникают в гаметах родителей заново, реже они существуют у одного из родителей и передаются потомкам.

Химические мутагены и ионизирующие излучения, при существенном повышении концентраций и доз вызывают возрастание частоты появления хромосомных мутаций. Спонтанные генные мутации происходят гораздо реже. Вероятность мутации в конкретном гене может колебаться около 10–5, в среднем на диплоидный геном приходится около двух новых мутаций. Однако далеко не все мутации вредны в гетерозиготном состоянии, они могут накапливаться и популяциях человека. Позднее, переходя в гомозиготное состояние, многие мутации могут приводить к возникновению тяжелых наследственных болезней.

Наследственные аномалии обмена веществ. Повышенный интерес медицинской генетики к наследственным заболеваниям объясняется тем, что во многих случаях знание биохимических механизмов развития заболевания позволяет облегчить страдания больного. Больному вводят несинтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут быть использованы вследствие отсутствия в организме необходимых для этого ферментов. Заболевание сахарным диабетом характеризуется повышением концентрации сахара в крови вследствие отсутствия инсулина – гормона поджелудочной железы. Это заболевание вызывается рецессивным геном. Оно лечится введением в организм инсулина, который теперь уже научились вырабатывать на фабриках, используя генно-инженерные методы. Однако следует помнить, что вылечивается только болезнь, т.е. фенотипическое проявление «вредного» гена, и вылеченный человек продолжает оставаться его носителем и может передавать этот ген своим потомкам. Сейчас известны сотни заболеваний, в которых механизмы биохимических нарушений изучены достаточно подробно. В некоторых случаях современные методы микроанализов позволяют обнаружить такие биохимические нарушения даже в отдельных клетках, а это, в свою очередь, позволяет ставить диагноз о наличии подобных заболеваний у еще не родившегося ребенка по отдельным клеткам в околоплодной жидкости.

5. Медико-генетическое консультирование

В настоящее время можно только лечить человека, страдающего наследственным заболеванием, применяя лекарственную терапию, диеты и т.д., а не вылечить, т.е. устранить причину заболевания (хромосомное или генное нарушение).

Медико-генетическое консультирование – это наиболее распространенный вид профилактики наследственных болезней, суть которого заключается в определении вероятности или степени риска рождения больного ребенка или ребенка с аномалиями в конкретной семье. Для решения этой задачи используются все возможные в настоящее время методы исследования генетического материала родителей, а также информация о состоянии здоровья родственников.

Впервые медико-генетическое консультирование было организовано в нашей стране в 1920-е гг. С.Н. Давиденковым.

По мере повышения биологической и особенно генетической образованности широких масс населения супружеские пары, еще не имеющие детей, все чаще обращаются к врачам-генетикам с вопросом о риске иметь ребенка, пораженного наследственной аномалией.

Медико-генетические консультации сейчас открыты во многих областях и краевых центрах нашей страны. Широкое использование медико-генетических консультаций сыграет немаловажную роль в снижении частоты наследственных недугов и избавит многие семьи от несчастья иметь нездоровых детей. Следует отметить, что курение, употребление алкоголя и особенно наркотиков матерью или отцом будущего ребенка резко повышает вероятность рождения младенца, пораженного тяжелыми наследственными недугами.

В настоящее время во многих странах широко применяется метод амниоцентеза, позволяющий анализировать клетки эмбриона из околоплодной жидкости. Благодаря этому методу женщина на раннем этапе беременности может получить важную информацию о возможных хромосомных или генных мутациях плода и избежать рождения больного ребенка.

Забота о чистоте среды обитания людей, непримиримая борьба с загрязнениями воды, воздуха, пищевых продуктов веществами, обладающими мутагенным и канцерогенным действием (т.е. вызывающими возникновение мутаций или злокачественное перерождение клеток), тщательная проверка на «генетическую» безвредность всех косметических и лекарственных средств и препаратов бытовой химии – все это важные условия для снижения частоты появления у людей наследственных недугов.

Основные методы изучения генетики человека:

Генеалогический;

Близнецовый;

Цитогенетический метод;

Популяционно-статистический метод;

Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников.

Представителей одного поколения располагают в одном ряду в порядке их рождения.

Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, тип наследования признака. При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.


Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.

Хромосомные мутации связаны с изменением числа или структуры хромосом. Из них под микроскопом при специальном окрашивании хорошо выявляются транслокации, делеции, инверсии. При транслокации или делеции хромосомы соответственно увеличиваются или уменьшаются в размере. А при инверсии меняется рисунок хромосомы (чередование полос).

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

Цитогенетический метод. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Денверская и Парижская номенклатура. Классификация хромосом по соотношению длины плеч и расчет центромерного индекса.

Цитогенетический метод. Цитогенетический метод состоит в исследовании под микроскопом хромосомного набора клеток больного. Как известно, хромосомы находятся в клетке в спирализованном состоянии и их невозможно увидеть. Для того же, чтобы визуализировать хромосомы клетку стимулируют и вводят ее в митоз. В профазе митоза, а также в профазе и метафазе мейоза хромосомы деспирализуются и визуализируются.

В ходе визуализации оценивают количество хромосом, составляют идиограмму, в которой все хромосомы записывают в определенном порядке согласно Денверской классификации. На основании идиограммы можно говорить о наличии хромосомной абберации или изменении числа хромосом, а соответственно о наличии генетического заболевания.

Все методы дифференциальной окраски хромосом позволяют выявлять их структурную организацию, которая выражается в появлении поперечной исчерченности, разной в разных хромосомах, а также некоторых других деталей.

Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.

А. Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции - Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между X- и Y-хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.

Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы - G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

Г. C-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.

Д. T-окрашивание применяют для анализателомерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

Классификация и номенклатура равномерно окрашенных хромосом человека впервые были приняты на международном совещании в 1960 году в г. Денвере, в дальнейшем несколько измененные и дополненные (Лондон, 1963 и Чикаго, 1966). Согласно Денверовской классификации все хромосомы человека разделены на 7 групп, расположенных в порядке уменьшения их длины и с учетом центриольного индекса (отношение длины короткого плеча к длине всей хромосомы, выраженное в процентах). Группы обозначаются буквами английского алфавита от А до G. Все пары хромосом принято нумеровать арабскими цифрами

В начале 70-х годов XX века был разработан метод дифференциальной окраски хромосом, выявляющий характерную сегментацию, который позволил индивидуализировать каждую хромосому (рис. 58). Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее отчетливо (Q-сегменты, G-сегменты, Т-сегменты, S-сегменты). Каждая хромосома человека содержит свойственную только ей последовательность полос, что позволяет идентифицировать каждую хромосому. Хромосомы спирализованы максимально в метафазе, менее спирализованы в профазе и прометафазе, что позволяет выделить большее число сегментов, чем в метафазе.

На метафазной хромосоме (рис. 59) приводятся символы, которыми принято обозначать короткое и длинное плечо, а также расположение районов и сегментов. В настоящее время существуют ДНК-маркеры или зонды, с помощью которых можно определить изменение определенного, даже очень маленького, сегмента в хромосомах (цитогенетические карты). На международном конгрессе генетики человека в Париже в 1971 г. (Парижская конференция по стандартизации и номенклатуре хромосом человека) была согласована система символов для более краткого и однозначного обозначения кариотипов.
При описании кариотипа:
указывается общее число хромосом и набор половых хромосом, между ними ставится запятая (46, XX; 46, XY);
отмечается какая хромосома лишняя или какой не хватает (это ука-зывается ее номером 5, 6 и др., или буквами данной группы А, В и др.); знаком «+» указывают на увеличение количества хромосом, знаком «-» указывают на отсутствие данной хромосомы 47, XY,+ 21;
плечо хромосомы, в котором произошло изменение (удлинение короткого плеча указывается символом (р+); укорочение (р-); удлинение длинного плеча указывается символом (q+); укорочение (q-);
символы перестроек (транслокация обозначается t, а делеция - del) помещают перед номерами вовлеченных хромосом, а перестроечные хромосомы заключают в скобки. Наличие двух структурно-аномальных хромосом обозначается точкой с запятой (;) или нормальной дробью (15/21).

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Виды близнецов. Проблема предрасположенности к заболеваниям. Факторы риска. Генеалогический метод (анализ родословного древа). Критерии определения типа наследования.

Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Среди близнецов выделяются однояйцевые и двуяйцевые.

Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный
рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Генеалогический анализ является самым распространенным, наиболее простым и одновременно высоко информативным методом, доступным каждому, кто интересуется своей родословной и историей своей семьи