Психология  Истории Обучение 

Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины

Предмет, задачи и методы генетики

Генетика -- наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822-1884) при скрещивании различных сортов гороха.Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельныеособи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи. Поскольку условия среды никогда не бывают одинаковыми даже для особей одного вида или сорта (породы), становится понятным, почему организмы, имеющие одинаковые генотипы, часто заметно отличаются друг от друга по фенотипу, т. е. по внешним признакам.Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный,организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.

Генетика - наука, изучающая явления наследственности и изменчивости живых организмов. В зависимости от исследуемых объектов различают генетику растений, животных, человека, микроорганизмов и других биологических объектов. В соответствие с методами исследования, генетику подразделяют на биохимическую, физиологическую, молекулярную, популяционную, медицинскую, ветеринарную, экологическую, космическую, биотехнологическую и др.

Генетика изучает гены и хромосомы, носители генов и каким образом невидимый ген дает видимый признак или продукт.

Основные теоретические проблемы, изучаемые генетикой:

1.Где и каким образом закодирована и хранится генетическая информация.

2.Как передается генетическая информация от клетки к клетке, от поколения к поколению.

3.Каким путем реализуется генетическая информация в процессе онтогенеза, т. е. индивидуального развития особи.

4.Какие изменения генетической информации происходят в процессе мутаций.

Генетика ─ от латинского слова geneo – порождать или от греческого genesis – происхождение.Это название было предложено в 1906 году английским ученым-зоологом У. Бэтсоном со следующим определением.

Генетика ─ наука о закономерностях наследственности и изменчивости, которая стремится постичь законы, определяющие сходства и различия между организмами, родственными друг другу по происхождению среди животных, растений и других органических форм. Генетика объясняет закономерности передачи признаков от родителей потомкам, открывает законы, по которым наследуются эти признаки.

Наследственность это способность организмов воспроизводить себе подобное, передавая свои признаки и свойства потомству. Наследственность представляет собой целый комплекс явлений, обусловленных как её носителями, так и закономерностями проявления наследственных задатков. Наряду с термином "наследственность" в генетике применяют термины "наследование" и "наследуемость". Наследование ─ это процесс передачи наследственных задатков или наследственной информации от родителей потомкам в поколениях. Наследуемость - это часть общей фенотипической изменчивости, которая обусловлена генетическими различиями.

Различают наследственностьядерную (хромосомную) и внеядерную (цитоплазматическую) . Ядерная наследственность определяется генами хромосом ядра и распространяется на большую часть признаков и свойств организма. Внеядерная ─ обусловлена наличием в цитоплазме клетки органелл, имеющих собственные гены (митохондрии, пластиды растений, микротельца ресничек клеток простейших организмов).

Выделяют истинную, ложную и переходную наследственность.

Истинная наследственность связана с действием собственных генов организма, находящихся в хромосомах ядра и цитоплазматических органелл.

Ложная наследственность это проявление в поколениях признаков и свойств, которые обусловлены действием среды. У гусениц бабочки капустницы зеленая окраска возникает в результате поедания листьев капусты, что обеспечивает им защиту от птиц сходной окраской с растением.

Переходная наследственность сочетает истинную и ложную наследственности. Примером является способность штаммов одних бактерий вырабатывать токсическое вещество, убивающее штаммы других, не родственных им бактерий, но безвредные для своих сородичей.

Второе свойство, изучающее генетикой ─ изменчивость.

Изменчивость - это способность организмов изменяться под действием наследственных и не наследственных факторов.

Различают множество форм изменчивости, важнейшие из которых: наследственная (генотипическая) и ненаследственная . Наследственная подразделяется на:

1. Комбинативную , возникающую у потомков вследствие перекреста хромосом в мейозе I (деление половых клеток), что ведет к перекомбинации признаков отцовской и материнской форм.

2. Онтогенетическая – обеспечивающая изменения в процессе индивидуального развития организма и дифференциации клеток в процессе роста и развития на основе наследственной информации, полученной от родителей.

3. Мутационная - возникает в результате воздействия мутагенных факторов (радиации, вредных химических соединений, отравляющих веществ и т. д.) на наследственный аппарат клетки (хромосомы и ДНК), что ведет к изменению наследственной информации о развитии какого-либо признака.

Ненаследственная изменчивость включает в себя:

1. Корреляционную ─ при которой существует взаимосвязь между признаками, определяющая изменение одного из них под влиянием изменения другого. Например, с увеличением живой массы овец увеличивается настриг шерсти ─ положительная корреляция и с увеличением удоя у коров снижается жирность молока ─ отрицательная корреляция.

2. Модификационную – которая вызывается внешними условиями и не закрепляется в генотипе.

Фактически все явления изменчивости взаимосвязаны с наследственностью и условиями среды. Таким образом, изменчивость – это всеобщее свойство организмов и один из ведущих факторов эволюции, которые обеспечивают приспособленность особей и лежат в основе естественного отбора, а также селекционного процесса, направляемого человеком.

Методы генетических исследований. При изучении ранее перечисленных вопросов применяются следующие методы генетических исследований:

1. Молекулярный ─ основными объектами, которого являются нуклеиновые кислоты ДНК и РНК, которые обеспечивают сохранение, передачу и реализацию наследственной информации.

2. Цитогенетический ─ это исследование явлений наследственности на клеточном уровне. Метод изучает число, размеры, формы, физико-химические свойства и причины изменений хромосом, цитоплазматических органоидов клетки, выявляет генетические причины различных наследственных болезней, позволяет оценить мутационную опасность факторов, воздействующих на организм.

3. Гибридологический метод включает систему скрещиваний заранее подобранных родительских особей и оценку полученного потомства по характеру проявления изучаемых признаков.

4. Моносомный ─ это определение местонахождения того или иного гена в определенной хромосоме, который отвечает за какой– либо признак.

5. Рекомбинационный ─ это изучение эффекта новых генных сочетаний, появляющихся в результате обмена между разными участками нити ДНК или хромосом за счет явления кроссинговера.

6. Генеалогический метод - один из вариантов гибридологического, который позволяет изучить наследование признаков в поколениях групп людей, животных или других организмов, связанных определенной степенью родства. Основой данного метода является составление родословных, выявление и учет заболеваний в поколениях, и характер их наследования.

7. Близнецовый метод ─ применяют при изучении влияния определенных факторов внешней среды и их взаимодействия с генотипом особи, а также для выявления относительной роли генотипической и модификационной изменчивости в общей изменчивости признака.

8. Мутационный метод (мутагенез) позволяет установить характер влияния мутагенных факторов на генетический аппарат клетки, ДНК, хромосомы, на изменения признаков или свойств.

9. Популяционно-статистический метод используют при изучении явлений наследственности в популяциях для установления изменений структуры последних под влиянием мутаций и отбора. Метод является теоретической основой современной селекции животных.

10. Феногенетический метод дает возможность установить степень влияния генов и условий среды (кормление и содержание) на развитие изучаемых свойств и признаков в онтогенезе животных.

Основой каждого метода является статистический анализ - биометрический метод. Он представляет собой ряд математических приемов, позволяющих определить степень достоверности полученных данных.

Основные этапы развития генетики, её достижения и пути дальнейшего развития. Многие века господствовала теория пангенезиса, согласно которой половые клетки образуются во всех частях тела, а затем по кровеносным сосудам попадают в половые клетки.

Первый этап доменделевский (до 1865 г.) .Считают, что научные основы в изучении наследственности были заложены Камерариусом, открывшим в 1694 году пол у растений. Ценные данные были получены И. Кельрейтером (1761 г.), изучивший гибриды 54 видов растений и установил, что пыльца передает признаки потомству так же, как и материнское растение.

Ч. Дарвин в своей работе "Происхождение видов" (1859) и в последующих трудах обобщил опыт и наблюдения практиков и естествоиспытателей по изучению явлений наследственности и изменчивости, которые наряду с отбором являются движущими факторами эволюции органической природы.

Второй этап – это переоткрытие законов Г. Менделя. В 1900 г. Г. де Фриз в Голландии, К. Корренс в Германии и Э. Чер-мак в Австрии независимо друг от друга установили, что полученные ими результаты по наследованию признаков у растительных гибридов полностью согласуются с данными Г. Менделя, который за 35 лет до них сформулировал правила наследственности. Г. де Фриз предложил установленные Г. Менделем правила называть законами наследования признаков.

Третий этап ─ период классической генетики. (1901-1953гг.) Началось интенсивное развитие науки о наследственности и изменчивости. Важную роль в развитии генетики сыграли исследования В. Бэтсона, который изучал наследование признаков у кур, бабочек, лабораторных грызунов; шведского ученого Г. Нильссона-Эле - по генетике количественных признаков и полимерии; датчанина В. Иоганнсена, создавшего учение о чистых линиях, которым были предложены термины "ген", "генотип", "фенотип". Цитологические исследования Т. Бовери пока-

зали наличие параллелизма в поведении хромосом в мейозе и при оплодотворении с наследованием признаков у гибридов.

Четвертый этап ─ современный. Начинается с 1961г., когда М. Ниренберг и С. Очао расшифровали генетический код. Было установлено, что ДНК содержит наследственную информацию, специфическую для каждого вида и особи. В 1969 г. в США Г. Корана с сотрудниками синтезировал вне организма химическим путем участок молекулы ДНК - ген аланиновой тРНК пекарских дрожжей. В 2001 году американская фирма «Селера» объявила о том, что ей удалось расшифровать геном (набор генов в половых хромосомах) человека.

В настоящее время исследования в генетике направлены на изучение следующих основных проблем:

В области генетической инженерии с целью получения в достаточном количестве лекарственных препаратов нового поколения, витаминов, незаменимых аминокислот, кормовых и пищевых белков, биологических средств защиты растений и т.д.

Регуляция и управление действием генов в онтогенезе, реализации генетической информации в признаках, разработки методов управления генами, позволяющие повысить продуктивность животных, резистентность к болезням;

Разработка методов управления процессами мутаций, что позволит получать нужные наследственные изменения при создании новых штаммов микроорганизмов, сортов растений, линий и пород животных;

Регуляция пола, позволяющая целенаправленно получать самок или самцов разных видов животных и птицы;

Генокопирование организмов посредством пересадки в яйцеклетку, из которой удалено ядро, нового, взятого из соматической клетки;

Защита наследственности населения и животных от мутагенного действия радиации, химических и биологических мутагенов;

Борьба с наследственными болезнями человека и животных, создание новых пород, устойчивых к болезням.

Литература: 1 (стр. 3-16).

Вид занятия: лабораторное. Время: 2 часа.

Цель. Изучить основные положения науки генетики, методы исследований, этапы становления и проблемы ею решаемые.

Материальное обеспечение: плакаты, схемы.

Задание 1. Уяснить понятия наследственности, наследования, наследуемости, изменчивости, методы генетических исследований.

Контрольные вопросы:

1. Генетика ─ наука о наследственности и изменчивости и вопросы, изучаемые генетикой. Сущность наследственности и изменчивости.

2. Методы исследования, применяемые в генетике.

3. Основные этапы развития генетики. Достижения современной генетики и пути её дальнейшего развития.

4. Роль наследственности и изменчивости в эволюции диких и домашних животных.

5. Связь генетики с другими науками и её значение для теории и практики медицины, ветеринарии, племенного дела в животноводстве.

Подведение итогов 10 минут.

Предмет, задачи и методы дисциплины. История генетики. Известные ученые.

ГЕНЕТИКА (от греч. genesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими.

Предметом исследований науки является наследственность, изменчивость и закономерности наследования признаков в ряду поколений.

Наследственность – неотъемлемое свойство организмов передавать потомству свои признаки и особенности развития. Благодаря наследственности возможно существование организмов, характеризующихся относительным постоянством признаков в течение довольно продолжительного времени в историческом эволюционном аспекте.

Наследование и изменение признаков обеспечивается размножением организмов. При разных способах размножения основой для начала развития нового организма могут быть половые или соматические клетки. В настоящее время определены как материальные структуры клетки, отвечающая за наследственность и изменчивость признаков, - хромосомы, так и тонкое строение самих хромосом, состоящих из генов.

Предметом исследований генетики являются не только материальные структуры наследственности, но и сам процесс передачи наследственных признаков, а также факторы, оказывающие влияние на проявление этих признаков в процессе онтогенеза. В понятие наследственности входит свойство генов детерминировать построение специфической белковой молекулы, развитие признака и план строения организма. Наследование же отражает закономерности процесса передачи наследственных свойств в организме от одного поколения к другому.

Наряду с наследственностью генетика изучает противоположную категорию константного состояния признаков организмов – изменчивость. Изменчивость обеспечивает возможность приспособления организмов к меняющимся условиям, за счет различных механизмов: мутаций, комбинативных изменений, а также степени проявления существующих генов под воздействием внешних и внутренних факторов. Таким образом, свойства наследственности и изменчивости обеспечивают возможность сохранения жизни в широком смысле слова на планете Земля.

Хотя, официальной датой рождения генетики принято считать весну 1900 г., однако основы современных представлений о материальной основе наследования заложены Грегори Менделем, открывшим законы дискретной наследственности. Результаты своих исследований он доложил 8 марта 1865 г. Обществу естествоиспытателей г. Брно, а затем, в конце следующего года был опубликован конспект его доклада в очередном томе «Записки Общества естествоиспытателей» под названием «Опыты над растительными гибридами». Однако, этот труд остался практически не замеченым.

Время для этого открытия пришло спустя 35 лет, когда трое ученых независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Гуго де Фриз (Голландия) - на основании работ с маком и другими растениями сообщил «о законе расщепления гибридов»; Карл Корренс (в Германии) установил ту же закономерность расщепления на кукурузе, а Эрик фон Чермак (Австрия) – на горохе.

После публикаций этих ученых, оказалось, что они, всего-навсего «переоткрыли» закономерности, открытые Грегором Менделем и изложенные им в 1865 г.

Следует подчеркнуть, что развитию науки о наследственности и изменчивости особенно способствовало учение Ч.Дарвина о происхождении видов, которое внесло в биологию исторический метод исследования эволюции организмов.

Основные задачи генетики заключаются в познании закономерностей наследственности и изменчивости, а также в изыскании путей практического использования этих закономерностей. Эти направления тесно связаны: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.

Если принять во внимание основные критерии, которые используются при характеристике живых организмов (морфологические, физиологические, биохимические, способ размножения), то удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:

Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована).

Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.

В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.

В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.

Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач.

Современные задачи генетики вытекают из установленных общих закономерностей, характеризующих наследственность и изменчивость.

Задачи современной генетики состоят не только в исследовании указанных теоретических проблем, раскрывающих перспективы и потенциал науки для познания кардинальных явлений природы. Перед наукой стоят также и более близкие задачи, важные для достижения многих практических целей. Сферы деятельности человека, в которых решаются задачи с применением генетики относятся к медицине, сельскому хозяйству, технологии пищевых продуктов, переработкой отходов и борьбой с различными загрязнителями, новые отрасли, связанные с биотехнологиями.

Многообразие задач, стоящих перед генетикой определяет различные направления исследований и формирует множество разделов генетики, представляющих как теоретический, так и практический интерес. Среди разделов общей, или «классической», генетики основными являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, цитоплазматическая (внеядерная) наследственность, мутации, модификации. Интенсивно развиваются молекулярная генетика, генетика онтогенеза (феногенетика), популяционная генетика (генетическое строение популяций, роль генетических факторов в микроэволюции), эволюционная генетика (роль генетических факторов в видообразовании и макроэволюции), генетическая инженерия, генетика соматических клеток, иммуногенетика, частная генетика - генетика бактерий, генетика вирусов, генетика животных, генетика растений, генетика человека, медицинская генетика и мн. др. Новейшая отрасль генетики - геномика - изучает процессы становления и эволюции геномов.

Методы генетики

Генетика, как любая наука имеет свои методы исследований. В ходе развития и накопления знаний появляются новые способы изучения наследственности и изменчивости организмов. Многообразие методов генетики определяется разнообразием объектов и структур изучения. К классическим методам генетики можно отнести:

1.Гибридологический метод - скрещивание (гибридизация) организмов, отличающихся друг от друга по одному или нескольким признакам. Потомки от таких скрещиваний называются гибридами.

2.Генеалогический метод (метод родословных) - изучение наследования какого-либо признака у человека в ряде поколений. Позволяет прогнозировать вероятность передачи потомкам наследственных заболеваний.

3.Близнецовый метод - изучение проявления признаков у однояйцовых близнецов. Позволяет оценить роль внешней среды в формировании фенотипа.

4.Цитогенетический метод - изучение количества, формы и размеров хромосом. Позволяет обнаружить хромосомные и геномные мутации.

5.Биохимический метод - изучение наследственно обусловленных нарушений обмена веществ. Позволяет обнаружить генные мутации.

6.Популяционный метод - изучение частоты встречаемости генов и генотипов в популяциях. Дает информацию о степени гетерозиготности и полиморфизма (неоднородности) человеческих популяций.

На современном этапе развития успехи молекулярной генетики создали предпосылки для возникновения четырех новых направлений генетических исследований преимущественно прикладного характера, основная цель которых изменять геном организма в желаемую сторону. Наиболее быстро из этих направлений развивались: 1.генетическая инженерия и

2.генетика соматических клеток.

Генетическая инженерия подразделяется на генную (искусственный перенос отдельных генов) и хромосомную (искусственный перенос хромосом и их фрагментов). Методы генной инженерии, развитие которых началось в 1972 в США в лаборатории П. Берга, широко используются для промышленного производства высококачественных биопрепаратов, используемых в медицине (инсулин человека, интерферон, вакцины против гепатитов В, для диагностики СПИД и т. д.). С их помощью получены разнообразные трансгенные животные. Получены растения картофеля и подсолнечника, обогащенные запасным белком, кодируемым геном бобовых, растения подсолнечника, обогащенные белком, кодируемым геном кукурузы. Очень перспективны работы, ведущиеся во многих лабораториях мира, по переносу генов азотфиксации из почвенных бактерий в сельскохозяйственные растения. Делаются попытки излечения наследственных заболеваний путем введения в организм пациента «здорового» гена для замещения им мутантного, являющегося причиной болезни. Достижения в технологии рекомбинантных ДНК, сделавшие возможным выделение многих генов др. организмов, а также расширение знаний о регуляции их экспрессии позволяют надеяться на реализацию этой, казавшейся прежде фантастической, идеи.

Метод хромосомной инженерии позволяет пересадить в яйцеклетку млекопитающего с удаленным ядром диплоидное ядро соматической клетки и ввести такую яйцеклетку в матку самки, гормонально подготовленную к имплантации. В этом случае родится потомок, генетически идентичный особи, от которой взята соматическая клетка. Таких потомков можно получить от этой особи неограниченное число, т. е. генетически клонировать ее.

2.ГЕНЕТИКА СОМАТИЧЕСКИХ КЛЕТОК ЗАНИМАЕТСЯ исследованиями, проводимыми на соматических клетках растений, животных и человека. Селекцией клеток растений - продуцентов лекарственных алкалоидов (руты душистой, раувольфии), в сочетании с мутагенезом содержание этих алкалоидов в клеточной массе повышено в 10-20 раз. Селекцией клеток на питательных средах и последующей регенерацией целых растений из клеточного каллуса выведены сорта ряда возделываемых растений, устойчивые к различным гербицидам и засолению почвы. Гибридизацией соматических клеток разных видов и родов растений, половая гибридизация которых невозможна или очень затруднена, и последующей регенерацией из клеточного каллуса созданы разные гибридные формы (капуста - турнепс, культурный картофель - дикие его виды и т. п.).

Другое важное достижение генетики соматических клеток животных - создание гибридов, на основе которых получают моноклональные антитела, служащие для создания высокоспецифических вакцин, а также для выделения необходимого фермента из смеси ферментов.

Весьма перспективны для практики еще два молекулярно-генетических направления - 3. сайт-специфичный мутагенез и 4.создание антисмысловых РНК . Сайт-специфичный мутагенез (индукция мутаций определенного выделенного рестриктазами гена или его комплементарной ДНК, и затем включение мутировавшего гена в геном для замены им его немутантного аллеля) впервые позволил индуцировать желательные, а не случайные генные мутации, и уже успешно применяется для получения направленных генных мутаций у бактерий и дрожжей.

Антисмысловые РНК, возможность получения которых впервые была показана в 1981 работающим в США японским иммунологом Д. Томизавой, могут использоваться для целенаправленного регулирования уровня синтеза определенных белков, а также для направленного ингибирования онкогенов и вирусных геномов. Исследования, проведенные по этим новым генетическим направлениям, были нацелены преимущественно на решение прикладных задач. Вместе с тем они внесли фундаментальный вклад в представления об организации генома, структуре и функциях генов, взаимоотношениях генов ядра и клеточных органелл и др.

ПРЕДМЕТ, МЕТОДЫ И ЗНАЧЕНИЕ ГЕНЕТИКИ

Наименование параметра Значение
Тема статьи: ПРЕДМЕТ, МЕТОДЫ И ЗНАЧЕНИЕ ГЕНЕТИКИ
Рубрика (тематическая категория) Генетика

Глава 1

Предмет генетики. Генетика (от греч. genesis - происхожде­ние) - наука о наследственности и изменчивости организмов. Термин ʼʼгенетикаʼʼ предложил в 1906 ᴦ. У. Бэтсон. Наследствен­ность - свойство живых существ обеспечивать^ материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального разви­тия в определœенных условиях внешней среды. Наследствен­ность - это воспроизведение жизни (Н. П. Дубинин). Изменчи­вость - это возникновение различий между организмами по ряду признаков и свойств.

Наследственность, изменчивость и отбор - основа эволюции. Благодаря им возникло огромное разнообразие живых существ на Земле. Мутации поставляют первичный материал для эволю­ции. В результате отбора сохраняются положительные признаки и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследствен­ности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорга­низмов.

С. М. Гершензон выделяет четыре основные теоретические проблемы, изучаемые генетикой:

1) хранения генетической информации (где и каким образом закодирована генетическая информация);

2) передачи генетической информации от клетки к клетке, от поколения к поколению;

3) реализации генетической информации в процессе онтоге­неза;

4) изменения генетической информации в процессе мутаций. Бурное развитие генетики связано с тем, что она открывает

*ошожность познания явлений жизни и намечает пути управле­ний ею. Сегодня генетика занимает центральное место В биологии. Наблюдается всœе более тесная интеграция генетики, селœекции, ветеринарии, биохимии и других наук. В результате Интеграции генетики и ветеринарии возникла ветеринарная гене-

Ветеринарная генетика - наука, изучающая наследвием генов позволит повысить продуктивность животных, резис-тентность к болезням, подавить проявление нежелательных при­знаков;

3) ставится задача разработать методы управления процессами мутаций, что даст возможность получать нужные наследственные изменения при создании новых штаммов микроорганизмов, сор­ тов растений, линий и пород животных;

4) изучается проблема регуляции пола у животных. Она пока решена в отношении регуляции пола у шелкопряда;

ведутся перспективные исследования по генокопированию у животных, т. е. пересадка в яйцеклетку, из которой удален собственный генетический материал, ядра, взятого из соматичес­ ственные аномалии и болезни с наследственным предрасположе­нием, разрабатывающая методы диагностики, генетической про­филактики и селœекции животных на устойчивость к болезням. Задачи ветеринарной генетики следующие:

1) изучение наследственных аномалий;

2) выработка методов выявления гетерозиготных носителœей наследственных аномалий;

3) контролирование (мониторинг) распространения вредных генов в популяциях и их элиминация;

4) цитогенетический анализ животных в связи с заболевания­ми;

5) изучение генетики иммунитета;

6) изучение генетики патогенности и вирулентности микроор­ ганизмов, а также взаимодействие микро- и макроорганизмов;

7) изучение болезней с наследственным предрасположением;

8) выработка методов раннего выявления (т. е. маркеров) ус­тойчивости восприимчивости организма к болезням, в т.ч. при отсутствии инфекционного фона;

9) изучение влияния вредных экологических веществ на на­следственный аппарат животных;

10)изучение генетически детерминированных реакций живот­ных на лекарственные препараты;

11)создание устойчивых к болезням, с низким генетическим грузом и приспособленных к определœенным условиям среды стад, линий, типов, пород. Последние две проблемы - предмет изучения селœекционно-ветеринарной генетики;

12)использование методов биотехнологии для повышения ре- зистентности животных к болезням и т д.

Методы генетики. Явления наследственности и изменчивости на молекулярном, клеточном, организменном и популяционном уровнях изучают, используя следующие основные методы.

Гибридологический анализ основан на использо­вании системы скрещивания в ряде поколений для определœения характера наследования признаков и свойств. Гибридологичес­кий анализ - основной метод генетики.

Генеалогический метод состоит в использова­нии родословных для изучения закономерностей наследования признаков, в т.ч. наследственных болезней. Этот метод в первую очередь применяется при изучении наследственности че­ловека и медленно плодящихся животных.

Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хро­мосомных перестроек и изменчивости числа хромосом. С помо­щью цитогенетики выявляют разные болезни и аномалии, свя­занные с нарушением в строении хромосом и изменением их числа.

Популяционно-статистический метод приме-

Томас Геят Морган (1866-1945)

Грегор Иоганн Мендель (1822-1884)

няется при обработке результатов скрещиваний, изучении связи между признаками, анализе генетической структуры популяций, распространении генетических аномалий в популяциях и т. д.

Иммуногенетический метод включает серологи­ческие методы, иммуноэлектрофорез и др., которые используют для изучения групп крови, белков и ферментов сыворотки крови тканей. Посредством его можно установить иммунологическую несовместимость, выявить иммунодефициты, мозаицизм близне­цов и т. д.

Онтогенетический метод используют для анализа действия и проявления генов в онтогенезе при различных усло­виях среды. Для изучения явлений наследственности и изменчи­вости используют биохимический, физиологический и другие методы.

Этапы развития генетики. Датой рождения генетики принято считать 1900 ᴦ., когда Г. де Фриз, К. Корренс и Э. Чермак пере­открыли законы Г. Менделя (1865). В развитии генетики можно выделить три этапа:

первый (с 1900 по 1925 ᴦ.) - этап классической генетики. В данный период были переоткрыты и подтверждены на многих видах растений и животных законы Г. Менделя, создана хромо­сомная теория наследственности (Т. Г. Морган);

второй (с 1926 по 1953 ᴦ.) - этап широкого развертывания работ по искусственному мутагенезу (Г. Меллер и др.). В это время было показано сложное строение и дробимость гена, зало­жены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителœем наслед­ственной информации (О. Эвери и др.)ʼʼ были заложены основы ве­теринарной генетики;

третий (начиная с 1953 ᴦ.) - этап современной генетики, для которого характерны исследова­ния явлений наследственности на молекулярном уровне. Была от­крыта структура молекулы ДНК (Ф. Крик, Дж. Уотсон), расшиф­рован генетический код (Ф. Крик, М. Ниренберг, С. Очоа, Д. Маттеи и др.), хими­ческим путем синтезирован ген (Г. Корана).

Николай Жлонп Вавилов (1Ш-1943)

Сегодня успешно развивается генетическая инжене­рия, давшая возможность перено­сить гены из одного организма в другой. Значительные достиже­ния имеются в области генетики микроорганизмов, растений.

Большой вклад в развитие генетики внесли отечественные ученые. Научные генетические школы созданы Н. К. Кольцо­вым, Ю. А. Филипченко, Н. И. Вавиловым, А. С. Серебров-ским. Г. А, Надсон и Г. С. Филиппов получили искусственным путем мутации. Н. И. Вавилов сформулировал закон гомологи­ческих рядов наследственной изменчивости. Г. Д. Карпеченко предложил метод преодоления бесплодия у отдаленных гибридов. А. С. Серебровский и др.
Размещено на реф.рф
показали сложное строение и дроби-мость гена. С. С. Четвериков - основатель учения о генетике популяций. Б. Л. Астауров на тутовом шелкопряде доказал воз­можность искусственного регулирования пола. Большой вклад в становление ветеринарной генетики в нашей стране внес акаде­мик Л. К. Эрнст. В Новосибирске создан первый НИИ ветери­нарной генетики и селœекции.

Значение генетики для практики. Большое значение имеют теоретические исследования по проблемам генетической инже­нерии в селœекции растений, микроорганизмов и животных, раз­работке более эффективных методов и средств предупреждения болезней и лечения животных. В большой степени от успешного развития генетики зависят решение проблемы пищевых ресур­сов, охрана здоровья человека и животных, борьба с наследст­венными болезнями, охрана окружающей среды.

Фундаментальные открытия в современной генетике реализу­ются в селœекции растений, животных и микроорганизмов. За последние годы созданы гибриды ячменя и пшеницы, ячменя и ржи, выведены сорта пшеницы, способные давать более 100 ц зерна с 1 га, высокомасличные сорта подсолнечника с содержа­нием жира в семенах до 55 %, сорт подсолнечника, масло кото­рого по составу сходно с оливковым. Выведены фитофтороу-стойчивые и ракоустойчивые сорта картофеля, триплоидная са­харная свекла и много других сортов растений. В растениеводстве широко используется явление тотипотентнос-ти, т. е. способности любой соматической клетки дать начало растению. Разработан метод микроклонального размножения но­вого сорта винограда, устойчивого! к филлоксере.

Методы генетической инженерии широко применяются в био­технологии (область научно-технического прогресса, использую­щая биологические процессы для промышленных целœей). Мето­дом генетической инженерии во ВНИИ генетики и селœекции промышленных микроорганизмов создан промьшшенный штамм кишечной палочки, продуцирующий аминокислоту 1-треонин (цо 30 г/л раствора), а также штамм - продуцент витамина Вг - рибофлавина. В Институте биоорганической химии создан штамм кишечной палочки, синтезирующий интерферон челове­ка. Созданы штаммы бактерий, продуцирующие аминокислоту лизин, гормон роста человека соматотропин, бактерии, превра­щающие целлюлозу в сахар, и т. д. Ведутся работы по введению в пекарские дрожжи генов, кодирующих такие белки, как оваль-бумин (белок куриного яйца) и миозин (белок мышц). Получены штаммы бактерий, синтезирующие инсулин человека. Успешно разрабатываются методы микробиологического синтеза вакцин и сывороток.

В животноводстве методы генетики используют:

1) при выведении линий и пород животных, устойчивых к болезням;

2) для уточнения происхождения животных;

3) при оценке производителœей по качеству потомства;

4) при цитогенетической аттестации производителœей;

5) в пушном звероводстве;

6) для изучения влияния экологически вредных веществ на наследственный аппарат животных и т. д.

Сегодня генетика занимается изучением следую­щих базовых проблем:

1) проводятся обширные исследования в области генетичес­ кой инженерии с целью получения в достаточном количестве инсулина, интерферона, антибиотиков, витаминов, незаменимых аминокислот, кормовых и пищевых белков, биологических средств защиты растений и т. д.;

3) решается одна из стратегических задач генетики - регуля- °Сия и управление действием генов в онтогенезе. Необходимо узнать пути реализации генетической информации в признак в процессе онтогенеза. Такие манипуляции уже проводят у амфибий, рыб, мышей. Разрабатываются методы получения генетических копий выдающихся по продуктивности и устойчивости к болезням жи­вотных;

4) решается проблема защиты наследственности человека и животных щ мутагенного действия радиации и химических мута­ генов среды;

5) исследуются вопросы борьбы с наследственными болезня­ми у человека и животных, создания линий, пород, устойчивых к болезням.

В учебнике изложены основы общей генетики, биотехноло­гии, биометрии и ветеринарной генетики.

Контрольные вопросы. 1. Что является предметом генетики? 2. Что изучает ветеринарная генетика? 3. Каковы основные методы изучения генетики? 4. Что вы знаете об этапах развит мл генетики? 5. Какое значение имеет генетика для практики?

ПРЕДМЕТ, МЕТОДЫ И ЗНАЧЕНИЕ ГЕНЕТИКИ - понятие и виды. Классификация и особенности категории "ПРЕДМЕТ, МЕТОДЫ И ЗНАЧЕНИЕ ГЕНЕТИКИ" 2014, 2015.

Генетика как наука возникла на рубеже XIX-XX вв. Она изучает два основных свойства организмов - наследственность и изменчивость.

Наследственность - это свойство живых организмов сохранять и передавать при размножении в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития . Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных факторов, ответственных за формирование признаков и свойств организма. Именно благодаря наследственности некоторые виды организмов остались почти неизменными в течение сотен миллионов лет, воспроизводя за это время огромное количество поколений. Например, современная кистеперая рыба латимерия мало чем отличается от своих девонских предков, живших около 400 млн лет назад.

Изменчивость - это способность потомков приобретать новые признаки и свойства, отсутствующие у родительских форм, и терять старые . Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются друг от друга и от своих родителей. Происходит это потому, что признаки и свойства каждого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды. в которых шло индивидуальное развитие каждого организма Эти условия никогда не бывают одинаковыми даже для особей одной популяции. Поэтому чем значительнее различия в условиях обитания, тем более четко будет наблюдаться изменчивость организмов как источник формирования у них новых признаков и свойств.

Основными задачами генетики являются :

  1. изучение материальных структур клетки - носителей генетической информации;
  2. изучение механизма передачи генетической информации от поколения к поколению всех живых организмов;
  3. изучение механизмов становления признаков в процессе индивидуального развития под контролем генов и влиянием условий внешней среды;
  4. изучение причин и механизмов изменчивости;
  5. изучение взаимосвязи процессов наследственности, изменчивости и отбора.

Задачи современной генетики состоят не только в решении указанных теоретических проблем, раскрывающих перспективу познания кардинальных явлений природы. Эта наука призвана решать многие практические задачи, такие, как:

  1. выбор наиболее эффективных типов скрещивания и способов отбора;
  2. изучение и разработка путей и методов управления развитием наследственных, наиболее ценных признаков и подавления нежелательных;
  3. искусственное получение новых форм живых организмов;
  4. разработка мероприятий по защите живой природы от вредных мутагенных воздействий внешней среды;
  5. разработка методов генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений и др.

Среди множества современных методов генетического анализа центральное место принадлежит гибридологическому методу . Суть его заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга по одному или нескольким признакам, и в последующем анализе потомства. Этот метод используется на молекулярном (гибридизация молекул ДНК или РНК), клеточном (гибридизация соматических клеток) и организмснном уровню в селекции микроорганизмов, растений и животных.