Психология  Истории Обучение 

Механизмы определения пола на хромосомном уровне. Хромосомное определение пола

Хромосомное определение пола. С давних времен человечество интересовал вопрос: почему у одних и тех же родителей появляются потомки разного пола и в связи с чем у большинства раздельнополых организмов наблюдается примерно одинаковое соотношение мужских и женских особей? Выдвигались сотни гипотез, но только развитие генетики и цитологии дало возможность раскрыть механизм наследования и определения пола.

Пол — это совокупность морфологических, физиологических, биохимических и других признаков организма, обеспечивающих воспроизведение себе подобных. Вспомним, что половые признаки принято делить на первичные (наличие половых желез определенного типа и других репродуктивных органов) и вторичные (фенотипические различия мужских и женских особей, непосредственно не принимающие участия в процессе размножения). Поскольку признаки определяются генами, было сделано предположение, что пол организма определяется генетически.

При исследовании кариотипов многих видов животных и человека было установлено, что у особей мужского и женского пола имеются различия в одной паре хромосом. Дальнейшие исследования показали, что эти хромосомы и определяют пол организма, в связи с чем они получили название половых хромосом. Все остальные пары хромосом (одинаковые у особей мужского и женского пола) были названы аутосомами.

В соматических клетках человека содержится 23 пары хромосом: 22 пары аутосом и 1 пара половых хромосом. В клетках мужского организма половые хромосомы резко отличаются по размеру и строению. Одна из них крупная, неравноплечая, содержит большое количество генов — это Х-хромосома (икс) (рис. 100). Другая хромосома мелкая, напоминает букву Y и содержит сравнительно мало генов. Она названа У-хромосомой (игрек). В клетках женского организма половые хромосомы одинаковые — две Х-хромосомы.

Обозначив аутосомы буквой А, можно записать хромосомный набор женщины в виде 44А + XX, мужчины — 44A+XY. При образовании гамет в каждую из них попадает половина аутосом и одна из половых хромосом. Значит, в женском организме образуется один тип яйцеклеток: все они имеют набор хромосом 22А+Х. В мужском организме формируются два типа сперматозоидов в равном соотношении: 22А + X и 22Л + У.

Если яйцеклетку оплодотворяет сперматозоид, содержащий Х-хромосому, из зиготы развивается женский организм. Если в оплодотворении участвует сперматозоид с 7-хромосомой, из зиготы развивается ребенок мужского пола. Следовательно, у человека пол ребенка зависит от типа сперматозоида отца. Поскольку оба типа мужских гамет образуются с одинаковой вероятностью, в потомстве наблюдается расщепление по полу 1:1.



Так же, как у человека, происходит определение пола у большинства других млекопитающих, ряда насекомых (например, у дрозофилы ), многих двудомных растений. Так, например, в соматических клетках дрозофилы имеется 4 пары хромосом: 3 пары аутосом и 1 пара половых хромосом (рис. 101).

Хромосомный набор самок дрозофилы 6А + XX, самцов — 6А + XY.

Пол, имеющий одинаковые половые хромосомы и образующий один тип гамет, принято называть гомогаметным.

Пол, формирующий два типа гамет, называется гетерогаметиым. При ХУ-типе определения пола женский пол является гомогаметным, а мужской — гетерога-метным (рис. 102).



В природе встречается и противоположный тип определения пола, при котором мужские особи являются гомогаметными, а женские — гетерогаметными. Это характерно, например, для птиц (см. рис. 102), многих пресмыкающихся, некоторых рыб, земноводных, бабочек (тутовый шелкопряд), растений (земляника). При этом половые хромосомы обозначают буквами Z и W, чтобы выделить данный тип определения пола. У самцов половые хромосомы записывают как ZZ, а у самок ZW.

У некоторых видов живых организмов гетерогаметный пол имеет лишь одну непарную половую хромосому, в то время как гомогаметный — две одинаковые. Например, у кузнечика самки имеют хромосомный набор 16А + XX, а самцы — 16А + АТ) (нулем обозначают отсутствие хромосомы). Самки являются гомогаметным полом, их яйцеклетки содержат по девять хромосом: 8А +Х. Самцы производят два типа сперматозоидов: в одних содержится также девять хромосом: 8А+Х, в других — только восемь: 8А + 0. Следовательно, у кузнечика мужской пол гетерогаметен. Х0-тип определения пола встречается и у других видов прямокрылых, а также у жуков, пауков, некоторых клопов, круглых червей. В случаях, когда гетерогаметным полом является женский, половые хромосомы самок записывают как Z0, а самцов — ZZ.

У пчел, ос, муравьев и некоторых других перепончатокрыл ых нет половых хромосом. Самки — это диплоидные организмы, которые развиваются из оплодотворенных яиц, а гаплоидные самцы — из неоплодотворенных (см. рис. 102).

Особенности наследования признаков, сцепленных с полом. Половые хромосомы содержат не только гены, определяющие пол организма, но и другие, не имеющие отношения к полу. Например, в.X-хромосоме человека расположены гены, контролирующие свертывание крови, цветоощущение (способность различать основные цвета), развитие зрительного нерва и др. 7-хромосома этих генов не содержит.

F-хромосома человека имеет небольшие размеры и соответственно содержит меньше генов, чем X- хромосома. Однако, помимо генов, определяющих развитие мужских половых признаков, в ней имеются и другие. Именно в Y- хромосоме находятся гены, определяющие наличие жестких волос на ушных раковинах, крупных зубов и некоторых других признаков. В А^-хромосоме таких генов нет, поэтому данные признаки могут проявляться лишь у мужчин.

Признаки, которые определяются генами, расположенными в половых хромосомах, называются признаками, сцепленными с полом. Наследование этих признаков имеет свои особенности. Рассмотрим их на примере наследственного заболевания человека — г е м о ф и л и и.

У больных гемофилией нарушен процесс свертывания крови, поэтому в результате травм или хирургического вмешательства могут возникать кровотечения, представляющие угрозу для жизни. Кроме того, у гемофиликов нередко происходят спонтанные кровоизлияния в суставы и внутренние органы.

Эта болезнь обусловлена рецессивным геном /г, сцепленным с Х-хромосо-мой. Доминантный ген Н определяет у человека нормальное свертывание крови. У женщин две Х-хромосомы, поэтому по признаку свертываемости крови, как и по другим признакам, сцепленным с Х-хромосомой, возможны три варианта генотипа:



Девочки, больные гемофилией, рояадаются чрезвычайно редко: одна на 100 млн ново-рояаденных (среди мальчиков этот показатель намного выше, в среднем 1: 10 000). Раньше многие девочки-гемофилики умирали в подростковом возрасте в связи с началом менструаций. Хотя гемофилия и на сегодняшний день считается неизлечимой болезнью, ее течение контролируется с помощью инъекций недостающего фактора свертывания крови. Таким образом, современная медицина существенно продлевает продолжительность жизни больных гемофилией.

При записи скрещиваний 7-хромосому обозначают чертой с крючком:

В отношении генов Н или h она является «пустой». Поэтому у мужчины имеется лишь один ген, определяющий свертываемость крови. Этот ген находится в Х-хромосоме и всегда проявляется в фенотипе независимо от того, является ли он доминантным или рецессивным. Таким образом, у мужчин могут быть следующие генотипы:

Как видно из записей генотипов, мужчины не могут являться носителями гена гемофилии и других наследственных заболеваний, сцепленных с Х-хромо-сомой.

Рассмотрим, какое потомство может появиться у женщины-носительницы гена гемофилии и мужчины с нормальной свертываемостью крови:



Итак, среди сыновей наблюдается расщепление по генотипу и фенотипу: половина — здоровые, половина — гемофилики. Среди дочерей наблюдается расщепление по генотипу: все они здоровы, но половина — носительницы гена гемофилии. Подобная закономерность характерна и для других рецессивных признаков, сцепленных с полом. К ним относятся, например, такие наследственные заболевания, как дал ьт о низ м, атрофия зрительного нерва, отсутствие потовых желез.

Для того чтобы родилась девочка с рецессивным признаком, сцепленным с Х-хромосомой, необходимо объединение в зиготе двух рецессивных генов — от матери и от отца. Для проявления такого же признака у мальчика достаточно одного рецессивного гена, полученного от матери (т. к. отец передает сыну только 7-хромосому). Поэтому рецессивные, сцепленные с Х-хромосомой признаки чаще встречаются среди мужчин. Например, в Европе дальтонизмом страдает более 6 % мужского населения, в то время как среди женщин это заболевание встречается с частотой приблизительно 0,5 %.

Генотип как целостная система. Изучая закономерности наследования признаков у организмов, вы познакомились с разными типами взаимодействия аллельных генов. В ряде случаев результатом такого взаимодействия может быть появление качественно нового признака, не определявшегося ни одним из генов в отдельности (вспомните, например, чем обусловлена IV группа крови у человека).

Однако у живых организмов известно огромное количество признаков, которые контролируются не одной, а двумя и более парами генов. Взаимодействием неаллельных генов определяются, например, рост, тип телосложения и цвет кожи у человека, окраска шерсти и оперения у многих млекопитающих и птиц, форма, величина, окраска плодов и семян растений и др. Часто наблюдается и противоположное явление, когда одна пара аллельных генов влияет сразу на несколько признаков организма. Кроме того, действие одних генов может быть изменено соседством других генов или условиями окружающей среды.

Таким образом, гены тесно связаны и взаимодействуют друг с другом. Поэтому генотип любого организма нельзя рассматривать как простую сумму отдельных генов. Генотип — это сложная целостная система взаимодействующих генов.

1. Какой набор половых хромосом характерен для соматических клеток мужчины? Женщины? Петуха? Курицы?

ZZ, ZW, WW, XX, XY, YY.

2. Почему у большинства раздельнополых животных появляется примерно одинаковое количество потомков мужского и женского пола?

3. Яйцеклетка шимпанзе содержит 23 аутосомы. Сколькими хромосомами представлен кариотип шимпанзе?

4. Какие признаки называются сцепленными с полом? Каковы особенности наследования этих признаков?

5. Докажите, что генотип живого организма представляет собой целостную систему.

6. Дальтонизм — рецессивный признак, сцепленный с Х-хромосомой. В семье, где мать обладает нормальным цветоощущением, родилась дочь-дальтоник. Установите генотипы родителей. Какова вероятность рождения у них здорового сына?

7. У полярной совы оперенные ноги доминируют над голыми. Этот признак контролируется аутосомными генами. Длинные когти — доминантный признак, который определяется геном, локализованным в Z-хромосоме. Самку с оперенными ногами скрестили с самцом, имеющим длинные когти и оперенные ноги. В результате получили потомство с различным сочетанием всех фенотипических признаков. Какова вероятность (%) появления среди потомства самца с голыми ногами и короткими когтями?

8. У одного из видов бабочек гетерогаметным полом является женский. Проведено скрещивание красного самца, имеющего булавовидные усики, с желтой самкой с нитевидными усиками. Половину потомства составили желтые самцы с нитевидными усиками, другую половину — красные самки с нитевидными усиками. Как наследуются окраска тела и тип усиков? Какие признаки доминируют? Установите генотипы скрещиваемых форм и их потомства.

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

Предмет генетических исследований - явления наследственности и изменчивости. Американский ученый Т-Х. Морган создал хромосомную теорию наследственности, доказывающую, что каждый биологический вид можно характеризировать определенным кариотипом, который содержит такие виды хромосом, как соматические и половые. Последние представлены отдельной парой, различающейся по мужской и женской особи. В данной статье мы изучим, какое строение имеют женские и мужские хромосомы и чем они отличаются между собой.

Что такое кариотип?

Каждая клетка, содержащая ядро, характеризуется определенным количеством хромосом. Оно получило название кариотипа. У различных биологических видов наличие структурных единиц наследственности строго специфично, например, кариотип человека составляет 46 хромосом, у шимпанзе - 48, речного рака - 112. Их строение, величина, форма отличаются у особей, относящихся к различным систематическим таксонам. Число хромосом в клетке тела называется диплоидным набором. Он характерен для соматических органов и тканей. Если в результате мутаций кариотип изменяется (например, у больных синдромом Клайнфельтера количество хромосом 47, 48), то такие особи имеют сниженную фертильность и в большинстве случаев бесплодны. Другое наследственное заболевание, связанное с половыми хромосомами, - синдром Тернера-Шерешевского. Он встречается у женщин, имеющих в кариотипе не 46, а 45 хромосом. Это значит, что в половой паре присутствуют не две х-хромосомы, а только одна. Фенотипически это проявляется в недоразвитии половых желез, слабо выраженных вторичных половых признаках и бесплодии.

Соматические и половые хромосомы

Они отличаются как формой, так и набором генов, входящих в их состав. Мужские хромосомы человека и млекопитающих входят в гетерогаметную половую пару ХУ, обеспечивающую развитие как первичных, так и вторичных мужских половых признаков.

У самцов птиц половая пара содержит две одинаковые ZZ мужские хромосомы и называется гомогаметной. В отличие от хромосом, детерминирующих пол организма, в кариотипе находятся наследственные структуры, идентичные как у мужского, так и у женского пола. Они носят название аутосом. В кариотипе человека их 22 пары. Половые мужские и женские хромосомы образуют 23 пару, поэтому кариотип мужчины можно представить в виде общей формулы: 22 пары аутосом + ХУ, а женщины - 22 пары аутосом + ХХ.

Мейоз

Образование половых клеток - гамет, при слиянии которых формируется зигота, происходит в половых железах: семенниках и яичниках. В их тканях осуществляется мейоз - процесс деления клеток, приводящий к образованию гамет, содержащих гаплоидный набор хромосом.

Овогенез в яичниках приводит к созреванию яйцеклеток только одного вида: 22 аутосомы + Х, а сперматогенез обеспечивает созревание гомет двух видов: 22 аутосомы + Х или 22 аутосомы + У. У человека же пол будущего ребенка определяется в момент слияния ядер яйцеклетки и сперматозоида и зависит от кариотипа сперматозоида.

Хромосомный механизм и определение пола

Мы уже рассмотрели, в какой момент происходит определение пола у человека - в момент оплодотворения, и оно зависит от хромосомного набора сперматозоида. У других животных представители разного пола отличаются количеством хромосом. Например, у морских червей, насекомых, кузнечиков в диплоидном наборе самцов присутствует лишь одна хромосома из половой пары, а у самок - обе. Так, гаплоидный набор хромосом самца морского червя ацирокантуса можно выразить формулами: 5 хромосом + 0 или 5 хромосом + х, а самки имеют в яйцеклетках только один набор 5 хромосом + х.

Что влияет на половой диморфизм?

Кроме хромосомного есть еще и другие способы определения пола. У некоторых беспозвоночных - коловраток, - пол определяется еще до момента слияния гамет - оплодотворения, в результате которого мужские и женские хромосомы образуют гомологичные пары. Самки морской полихеты - динофилюса в процессе овогенеза образуют яйцеклетки двух видов. Первые - мелкие, обедненные желтком, - из них развиваются самцы. Другие - крупные, с огромным запасом питательных веществ - служат для развития самок. У медоносных пчел - насекомых ряда Перепончатокрылых - самки продуцируют два вида яйцеклеток: диплоидные и гаплоидные. Из неоплодотворенных яиц развиваются самцы - трутни, а из оплодотворенных - самки, являющиеся рабочими пчелами.

Гормоны и их воздействие на формирование пола

У человека мужские железы - семенники - продуцируют половые гормоны ряда тестостерона. Они влияют как на развитие (анатомическое строение наружных и внутренних половых органов), так и на особенности физиологии. Под воздействием тестостерона формируются вторичные половые признаки - строение скелета, особенности фигуры, оволосение тела, тембр голоса, В организме женщины яичники вырабатывают не только половые клетки, но и гормоны, являясь Половые гормоны, такие как эстрадиол, прогестерон, эстроген, способствуют развитию наружных и внутренних половых органов, оволосению тела по женскому типу, регулируют менструальный цикл и протекание беременности.

У некоторых позвоночных животных, рыб, и земноводных биологически активные вещества, продуцируемые гонадами, сильно влияют на развитие первичных и вторичных половых признаков, а виды хромосом при этом не оказывают настолько большого воздействия на формирование пола. Например, личинки морских полихет - бонеллии - под влиянием женских половых гормонов прекращают свой рост (размеры 1-3 мм) и становятся карликовыми самцами. Они обитают в половых путях самок, которые имеют длину тела до 1 метра. У рыб-чистильщиков самцы содержат гаремы из нескольких самок. Женские особи, кроме яичников, имеют зачатки семенников. Как только самец гибнет, одна из гаремных самок берет на себя его функцию (в её теле начинают активно развиваться мужские гонады, вырабатывающие половые гормоны).

Регуляция пола

В она осуществляется двумя правилами: первое определяет зависимость развития зачаточных половых желез от секреции тестостерона и гормона MIS. Второе правило указывает на исключительную роль, которую играет У-хромосома. Мужской пол и все соответствующие ему анатомические и физиологические признаки развиваются под воздействием генов, находящихся в У-хромосоме. Взаимосвязь и зависимость обоих правил в генетике человека называется принципом роста: у эмбриона, являющегося бисексуальным (то есть имеющим зачатки женских желез - мюллерова протока и мужских гонад - вольфова канала) дифференцировка эмбриональной половой железы зависит от наличия или отсутствия в кариотипе У-хромосомы.

Генетическая информация в У-хромосоме

Исследованиями ученых-генетиков, в частности Т-Х. Моргана, было установлено, что у человека и млекопитающих генный состав Х- и У-хромосом неодинаков. Мужские хромосомы у человека не имеют некоторых аллелей, присутствующих в Х-хромосоме. Однако в их генофонде представлен ген SRY, контролирующий сперматогенез, приводящий к формированию мужского пола. Наследственные нарушения этого гена в эмбрионе приводит к развитию генетического заболевания - синдрома Суайра. В результате женская особь, развивающаяся из такого эмбриона, содержит в кариотипе ХУ половую пару или только участок У-хромосомы, содержащий генный локус. Он активизирует развитие гонад. У больных женщин не дифференцируются вторичные половые признаки, и они бесплодны.

У-хромосома и наследственные заболевания

Как отмечалось ранее, мужская хромосома отличается от Х-хромосомы как размерами (она меньше), так и формой (имеет вид крючка). Также для нее специфичен и набор генов. Так, мутация одного из генов У-хромосомы фенотипически проявляется появлением пучка жестких волос на мочке уха. Этот признак характерен только для мужчин. Известно такое наследственное заболевание, вызванное как синдром Клайнфельтера. Больной мужчина имеет в кариотипе лишние женские или мужские хромосомы: ХХУ или ХХУУ.

Основными диагностическими признаками является патологический рост молочных желез, остеопороз, бесплодие. Заболевание достаточно распространено: на каждых 500 новорожденных мальчиков приходится 1 больной.

Подводя итог, отметим, что у человека, как и у других млекопитающих, пол будущего организма определяется в момент оплодотворения, вследствие определенной комбинации в зиготе половых Х- и У-хромосом.

Лекция

Генетика пола.

Хромосомный механизм определения пола

Одной из важных проблем в биологии всегда была загадка рождения организмов разного пола. Сотни гипотез о природе этого явления были опубликованы в трудах прошлых веков и особенно в XIX в. Однако только хромосомная теория позволила понять внутренний механизм определения пола и причину того, почему в природе в большинстве случаев рождается половина особей мужского и половина – женского пола. Хромосомный механизм наследования пола был открыт в лаборатории Т. Моргана Э. Вильсоном в 1914 г. при изучении кариотипа мушки дрозофилы. Он доказал, что из 4 пар хромосом самца и самки 3 пары были идентичны по строению. Четвертая пара отличалась. У самки обе хромосомные пары были одинаковые – субметацентрические. У самца хромосомы были разные: одна гомологичная хромосоме самки – субметацентрическая, другая маленькая – акроцентрическая. Субметацентрическую хромосому обозначили как Х, а акроцентрическую – У. Таким образом, кариотипы самки и самца различны, и это различие по одной паре хромосом, которые назвали половыми . Хромосомы, по которым мужской и женский пол не отличаются, назвали аутосомами.

Таким образом, в генотипе дрозофилы всего 8 хромосом: 6 аутосом и 2 половые. У самки хромосомный набор – 6А+ХХ, у самца – 6А+ХУ. У женской особи образуется один тип гамет – все половые клетки содержат – 3А+Х. В данном случае такой пол называют гомогаметным. Мужской пол образует два типа гамет 3А+Х – 50% и 3А+У – 50%. Такой пол называют гетерогаметным.

Типы хромосомного определения пола

    Самки имеют две ХХ хромосомы (гомогаметный пол), а самцы имеют одну Х-хромосому и непарную ей У – хромосому (гетерогаметный пол). Такой тип определения пола у млекопитающих, двукрылых, жуков.

    Мужской пол гетерогаметен – 50% гамет несут ген Х, 50% -- не имеют половой хромосомы. Кариотип самки 2А+ХХ, кариотип самца – 2А+ХО. Описан у большинства прямокрылых насекомых, многоножек, жуков, пауков, нематод.

    Женский пол гетерогаметен – 50% гамет несут ген Х, 50% гамет – несут ген У. В этом случае, для обозначения половых хромосом используют другие буквы: женский пол – ZW , мужской пол – ZZ . Такой тип определения пола характерен для птиц, бабочек, хвостатых амфибий.

    У моли женский пол гетерогаметен, 50% гамет несут ген – Х, а 50% -- не имеют половой хромосомы.

    Особый тип определения пола характерен для пчел. Здесь разница между полами затрагивает не одну пару хромосом, а весь набор. Самки пчел диплоидны, самцы гаплоидны. Самки развиваются из оплодотворенных яйцеклеток, самцы в результате партеногенеза.

Определение пола у разных организмов может происходить на разной стадии жизненного цикла.

    Пол организма может определяться еще в период созревания женских половых клеток – яйцеклеток. Такое определение пола называется прогамным , т.е. оно происходит до оплодотворения. Прогамное определение пола обнаружено у коловраток, кольчатых червей. Яйцеклетки у этих организмов в результате неравномерного распределения цитоплазмы в процессе оогенеза различаются по размерам. Из мелких клеток после оплодотворения развиваются самцы, из крупных – только самки.

    Наиболее распространенным типом определения пола является определение его в момент оплодотворения. Это сингамное определение пола. Встречается у млекопитающих, птиц, рыб и т.д.

    Пол может определяться на ранних этапах индивидуального развития особи. Это эпигамный тип определения пола. Например, у морского червя Bonelia viridis . Свободноплавающие личинки этого червя развиваются в самок. Если личинка остается прикрепленной к материнской особи, то из нее развивается самец. Начавшую развиваться в самца личинку отделить от самки, то изменяется направление дифференциации пола в женскую особь, и из нее развивается интерсекс – имеет признаки самца и самки.

Один из примеров полного переопределения пола описан в 1953 г. японским ученым Т. Ямамото. Опыт проводился на белых и красных медиках, у которых доминантный ген красной окраски находится в Y – хромосоме. В таком случае самцы будут всегда красными, самки белыми. Фенотипически красных самцов кормили с добавлением в корм женского полового гормона. В результате оказалось, что все красные рыбки с генотипом самца являются самками с нормальными яичниками и женскими вторичными половыми признаками.

Переопределение пола может быть следствием мутаций определенных генов, участвующих в дифференциации пола. Так, у дрозофилы в одной из аутосом обнаружен рецессивный ген tra , присутствие которого в гомозиготном состоянии обуславливает развитие женских зигот (ХХ) в фенотипических самцов, оказывающихся стерильными. Самцы XY , гомозиготные по этому гену, являются плодовитыми. Аналогичные гены обнаружены у растений. Например, у кукурузы рецессивная мутация silkless в гомозиготном состоянии вызывает стерильность семяпочек, в связи, с чем обоеполое растение функционирует как мужское. У сорго обнаружено два доминантных гена, комплементарное взаимодействие которых также вызывает женскую стерильность.

Наследование признаков сцепленных с полом

Генетические исследования показали, что половые хромосомы отвечают не только за определение пола организма, они как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х - или Y - хромосомах, называется наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган. У дрозофилы красный цвет глаз доминирует над белым. 1) При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказалось красноглазым.

Р: ж. красноглазые Х м. белоглазые

2) Если скрестить между собой гибридов первого поколения, то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление – 50% белоглазых и 50% красноглазых.

Р: ж. красноглазые Х м. красноглазые

F : ж. красноглазые, 50% м. красноглазые, 50% м. белоглазые

3) Если скрестить белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. Во втором поколении половина самок и самцов – красноглазые, половина – белоглазые.

Р: ж. белоглазые Х м. красноглазые

F : ж. красноглазые, м. белоглазые

Какие можно сделать выводы?

Ген, отвечающий за окраску глаз у дрозофилы, локализован в Х-хромосоме, а Y - хромосома таких генов не содержит. Самки получают одну Х-хромосому от отца, другую от матери, а самцы Х-хромосому получают только от матери, а Y -хромосому от отца. Х и Y хромосомы не являются гомологичными. Гены, находящиеся на Х-хромосоме отсутствует на Y - хромосоме. Так у человека на Х- хромосоме находится 200 генов не связанных с развитием пола: гемофилия, цветная слепота, мышечная дистрофия, др. Если гены, отвечающие за развитие данных признаков, окажутся у представителя мужского пола, то они проявятся фенотипически, так как представлены в генотипе в единичном варианте. Такие гены получили название гемизиготных. Если гены локализованы в Y – хромосоме и не имеют аллелей в Х-хромосоме, то признаки, обусловленные ими, передаются от отца к сыну. Такое наследование является голандрическим . К голандрическим относят следующие признаки: гипертрихоз, перепонки между пальцами ног.

Признаки, ограниченные полом

Признаки, проявление которых различно у представителей разных полов, или проявляющиеся только у одного пола, относятся к признакам, ограниченным полом. Эти признаки могут определяться генами, расположенными как в аутосомах, так и в половых хромосомах. Возможность развития признака зависит от пола организма. Например, тембр голоса баритон или бас характерны только для мужчин. Проявление генов, ограниченных полом, связано с реализацией генотипа в условиях среды целостного организма. Помимо генов, отвечающих за развитие вторичных половых признаков, которые в норме работают только у одного из полов, у другого они присутствуют, но молчат. Функциональная активность других генов определяется гормональной активностью организма. Например, у быков есть гены, контролирующие продукцию молока и его качественные особенности (жирность, содержание белка), но у быков они молчат, а функционируют только у коров. Потенциальная способность быка давать высокомолочное потомство делает его ценным производителем молочного стада.

Признаки, зависимые от пола

Существуют признаки, зависимые от пола. Гены, степень проявления которых определяется уровнем половых гормонов, называются генами, зависимыми от пола. Эти гены могут находиться не только в половых хромосомах, но и в любых аутосомах. Например, ген определяющий облысение, типичное для мужчин, локализован в аутосоме и его проявление зависит от мужских половых гормонов. У мужчин этот ген действует как доминантный, а у женщин как рецессивный. Если у женщин этот ген в гетерозиготном состоянии, то признак не проявляется. Даже в гомозиготном состоянии у женщин этот признак выражен слабее, чем у мужчин.

Генетическое определение пола


1. Какие хромосомы называются половыми?
2. Какие организмы называются гермафродитами?
3. Какие болезни называются наследственными?

Теория наследования пола.

Подавляющее большинство видов животных представлено особями двух полов - мужского и женского. Расщепление по половой принадлежности происходит в соотношении 1:1. Иными словами, у всех видов численность самцов и самок приблизительно одинакова. Еще Г. Мендель обратил внимание на то, что такое расщепление в потомстве по какому-либо признаку наблюдается в тех случаях, когда одна из родительских особей была гетерозиготой (Аа) по этому признаку, а вторая - рецессивной гомозиготой (аа). Было сделано предположение, что один из полов (тогда было неясно, какой именно) гетерозиготен, а второй гомозиготен по гену, который определяет пол организма.

Современная теория наследования пола была разработана Т. Морганом и его сотрудниками в начале XX в. Им удалось установить, что самцы и самки различаются по набору .

У мужских и женских организмов все пары хромосом, кроме одной, одинаковы и называются аутосомами, а одна пара хромосом, называемых половыми, - у самцов и самок различается. Например, и у самцов, и у самок дрозофил в каждой клетке по три пары аутосом, а вот половые хромосомы различаются: у самок - по две Х-хромосомы, а у самцов X и Y (рис. 62). Пол будущей особи определяется во время оплодотворения. Если сперматозоид содержит Х-хромосому, то из оплодотворенной яйцеклетки разовьется самка (XX), а если в сперматозоиде содержалась половая Y-хромосома - то самец (ХY).

Так как у самок дрозофил образуются только яйцеклетки, содержащие половые Х-хромосомы, то женский пол у дрозофил называют гомогаметным. У самцов дрозофил образуются в равном соотношении сперматозоиды либо с Х-, либо Y-половыми хромосомами. Поэтому мужской пол у дрозофил называется гетерогаметным.

У многих видов живых существ, например у ракообразных, земноводных, рыб, большинства млекопитающих (в том числе и человека), женский пол гомогаметный (XX), а мужской - гетерогаметный (ХY).

Наследование пола у человека можно представить в виде схемы (рис. 63). Очевидно, что соотношение полов при таком скрещивании теоретически всегда будет 1:1.

У людей Y-хромосома, определяющая мужской пол, передается от отца к сыну в момент оплодотворения. Таким образом, пол младенца зависит только от того, какая из половых хромосом попала в зиготу от отца. В У-хромосоме человека находятся гены белков, необходимых для нормального развития мужских половых желез. Эти железы очень быстро начинают выделять мужские половые гормоны, определяющие формирование всей половой системы мужчины. Если же в оплодотворении участвовал сперматозоид с Х-хромосомой, то в клетках развивающегося зародыша Y-хромосома отсутствует, значит, нет и кодируемых ей «мужских» белков. Поэтому в зародыше девочки развиваются яичники и женские половые пути.

Итак, у дрозофилы и человека женский пол является гомогаметным, и общая схема наследования пола у двух этих видов одинакова. У некоторых видов живых существ хромосомное определение пола совсем другое. Например, у птиц и рептилий - гомогаметны самцы (XX), а самки - гетерогаметны (ХY). У некоторых насекомых у самцов в хромосомном наборе лишь одна половая хромосома (ХО), а самки - гомогаметны (XX).

У пчел и муравьев половых хромосом нет, и самки имеют в клетках тела диплоидный набор хромосом, а самцы, развивающиеся партеногенетически (из неоплодотворенных яйцеклеток), - гаплоидный набор хромосом. Естественно, что в этом случае развитие сперматозоидов у самцов идет без мейоза, так как уменьшить число хромосом менее гаплоидного набора невозможно.

У крокодилов половые хромосомы не обнаружены. Пол зародыша, развивающегося в яйце, зависит от температуры окружающей среды: при высоких температурах развивается больше самок, а в том случае, если прохладно, - больше самцов.

Наследование признаков, сцепленных с полом. В половых хромосомах расположен целый ряд генов, которые никак не связаны с признаками, имеющими отношение к полу. Признаки, гены которых расположены в половых хромосомах, получили название сцепленных с полом. Характер их наследования зависит от принципа генетического определения пола. Как говорилось в предыдущем параграфе, у человека женский пол является гомогаметным (XX), а мужской - гетерогаметным (ХY).

У человека У-хромосома маленькая, но в ней, кроме гена, отвечающего за развитие мужских половых желез, присутствует значительное число других генов, например ген, определяющий размер зубов.

А вот Х-хромосома содержит не менее 200 генов. В соматических клетках женщины по две Х-хромосомы, поэтому за каждый признак отвечает по два гена, а в клетках организма мужчины всего одна Х-хромосома, и все полторы сотни генов, расположенных в ней, - и доминантные, и рецессивные, - обязательно проявляются в фенотипе. Предположим, что в организм мальчика попала от матери «бракованная» Х-хромосома с каким-нибудь мутантным геном, приводящим к развитию болезни. Так как второй Х-хромосомы в его клетках нет (есть только Y-хромосома), то болезнь обязательно проявится. Если же такая Х-хромосома с мутантным геном попала в яйцеклетку, из которой разовьется девочка, то она не заболеет, так как получит от отца нормальную X-хромосому с геном, который подавит действие мутантного. По описанной схеме у человека наследуется гемофилия - заболевание, при котором в организме не хватает одного из веществ, необходимого для свертывания крови. При гемофилии человек может истечь кровью даже при небольшом порезе или ушибе.

Эта болезнь может передаваться мальчику от здоровой матери в том случае, если она является носительницей патологического гена в одной из Х-хромосом, а парный ему аллельный ген второй Х-хромосомы - нормальный (рис. 64), В этом случае вероятность рождения больного мальчика составляет 50%. Девочки болеют гемофилией чрезвычайно редко, так как для этого здоровая женщина - носительница гена гемофилии должна родить девочку от мужчины-гемофилика, и даже в этом случае вероятность того, что дочь будет больна гемофилией, составит 50%.

Точно так же, как гемофилия, наследуется дальтонизм - врожденное неразличение красного и зеленого цветов, которое, впрочем, не опасно для жизни.


Признаки, сцепленные с полом. Аутосомы. Половые хромосомы. Гомогаметный пол. Гетерогаметный пол.

1. Какие типы хромосом вам известны?
2. Что такое гомогаметный и гетерогаметный пол?
3. Как наследуется пол у млекопитающих?
4. Какие другие варианты хромосомного и нехромосомного определения пола у живых организмов вам известны? Приведите конкретные примеры,
5. Мужской или женский пол у человека является гетерогаметный?
6. Имеются ли различия по числу хромосом между маткой и рабочими особями медоносной пчелы?

Мужской пол часто называют сильным. Однако с точки зрения генетики это не так. Мужской организм менее устойчив ко многим неблагоприятным воздействиям: инфекциям, кровопотере, стрессу и т. д. В связи с этим отношение полов 1; 1 в популяциях людей нарушено: на 100 девочек рождается 106 мальчиков. Механизм этого явления пока неясен. К 18 годам соотношение становится нормальным - 1:1, к 50 годам на 100 женщин остается 85 мужчин, а к 80 годам - только 50!

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков, цитологически они отличаются по одной паре хромосом, ее назвали половыми хромосомами. Одинаковые хромосомы этой пары назвали X(икс)- хромосомами. Непарную, отсутствующую у другого пола- Y (игрек)- хромосомой; остальные, по которым нет различий аутосомами (А). У человека 23 пары хромосом. Из них 22 пары аутосом и 1 пара половых хромосом. Пол с одинаковыми хромосомами XX, образующий один тип гамет (с X- хромосомой), называют гомогаметным, другой пол, с разными хромосомами XY, образующий два типа гамет (с X-хромосомой и с Y-хромосомой), - гетерогаметным. У человека, млекопитающих и других организмов гетерогаметный пол мужской; у птиц, бабочек - женский.

X- хромосомы, помимо генов, определяющих женский пол, содержат гены, не имеющие отношения к полу. Признаки, определяемые хромосомами, называются признаками, сцепленными с полом. У человека такими признаками являются дальтонизм (цветная слепота) и гемофилия (несвертываемость крови). Эти аномалии рецессивны, у женщин такие признаки не проявляются, если даже эти гены несет одна из X- хромосом; такая женщина является носительницей и передает их с Х - хромосомой своим сыновьям.

Цитогенетический метод определения пола. Он основан на микроскопическом изучении хромосом в клетках человека. Применение цито генетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. В качестве экспресс- метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х- хромосом. При увеличении количества Х - хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа хромосом. При уменьшении числа хромосом тельце отсутствует. В мужском кариотипе Y- хромосома может быть обнаружена по более интенсивной люмисценции по сравнению с другими хромосомами при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1:1.

Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола (гетерогаметный пол) и одного вида гамет -особями другого пола (гомогаметный пол). Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах. У гомогаметного пола, имеющего одинаковые половые хромосомы XX, все гаметы несут гаплоидный набор аутосом плюс Х-хромосому. У гетерогаметного пола в кариотипе кроме аутосом содержатся две разные или только одна половая хромосома (XY или ХО). Его представители образуют два вида гамет, различающиеся по гетеро-хромосомам: X и Y или X и 0.

У большинства видов развитие признаков пола осуществляется на основе наследственной программы, заключенной в генотип. Однако известны примеры, когда половая принадлежность организма целиком зависит от условий, в которых он развивается.

У высших организмов значение среды в определении признаков пола, как правило, невелико. Возможность переопределения пола обусловлена тем, что первичные закладки гонад у эмбрионов всех животных изначально бисексуальны. В процессе онтогенеза происходит выбор направления развития закладки в сторону признаков одного пола, включая дифференцировку половых желез, формирование половых путей и вторичных половых признаков. Первостепенная роль в развитии мужского или женского фенотипа принадлежит гормонам, образуемым гонадами.

Генотип особи заключает в себе информацию о возможности формирования признаков того или иного пола, которая реализуется лишь при определенных условиях индивидуального развития. Изменение этих условий может стать причиной переопределения признаков пола.

Генетический код и его свойства. Кодирование и реализация информации в клетке. Кодовая система ДНК и белка. Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, плейотропия, генокопии.

. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

Св-ва ген. кода:

1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

5) Внутри гена нет знаков препинания.

6) Код универсален. Генетический код един для всех живых на земле существ.

Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

1) Связывание РНК-полимеразы с промотором,

2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

3)элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

Фенотипическое проявление информации, заключенной в генотипе, характеризуется показателями пенетрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у которых доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля. Экспрессивность также является показателем, характеризующем фенотипическое проявление наследственной информации. Она характеризует степень выраженности признака и, с одной стороны, зависит от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследовании, а с другой стороны - от факторов среды.

При прямой плейотропии все разнообразные дефекты, возникающие в различных тканях или органах, вызываются непосредственным действием одного и того же гена именно в этих разных местах. В случае относительной плейотропии существует одно первичное место действия мутантного гена, а все остальные наблюдаемые при ней симптомы возникают как следствие.

Молекула ДНК - это двухцепочечная спираль, закрученная вокруг собственной оси. Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу, и соединена с другой, комп­лементарной ей цепью с помощью водородных связей, обра­зующихся между аденином и тимином (две связи), а также гу­анином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными. В результате у всякого орга­низма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Эта зако­номерность получила название «правило Чаргаффа», то есть А+Г=Т+Ц. Благо­даря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая спо­собность к избирательному соединению нуклеотидов назы­вается комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Функцией ДНК является хранение, пере­дача и воспроизведение в ряду поколений генетической ин­формации. В ДНК любой клетки закодирована информация о всех белках данного организма, о том, какие белки и в какой последовательности будут синтезироваться.

Репликация- это процесс самоудвоения молекул ДНК при (участии ферментов). Репликация осуществляется перед каждым клеточным делением. Она начинается с раскручивания спирали ДНК в S-периоде интерфазы под действием фермента ДНК-полимеразы. На каждой из цепей, образовавшихся после разрыва водородных связей, синтезируется по принципу комплементарности и антипараллельности дочерняя цепь ДНК. Причем одна из новых цепей синтезируется сплошной, а вторая - в виде коротких фрагментов, которые затем сши­ваются специальным ферментом - ДНК-лигазой.

Таким образом, каждая полинуклеотидная цепь выполня­ет роль матрицы для новой комплементарной цепи. В каж­дой из 2-х молекул ДНК одна цепь остается от родительской молекулы, а другая является вновь синтезированной. Такой принцип репликации назван полуконсервативным.

Биологический смысл репликации заключается в точной пе­редаче наследственной информации от материнской клетки к дочерним, что и происходит при делении соматических клеток. Самая важная особенность репликации ДНК - ее высо­кая точность.

Нуклеиновые кислоты были открыты около 100 лет назад (1868) швейцарским ученым Ф. Мишером. Поскольку они обладали кислотными свойствами и находились преимущественно в ядре, их назвали нуклеиновыми кислотами (от лат. nucleus - ядро). Нуклеиновые кислоты являются полимерными соединениями. Простейшие составные части этих соединений, нуклеотиды, состоят из одной молекулы фосфорной кислоты, одной молекулы сахара и одной молекулы органического основания. Сахар в нуклеиновых кислотах встречается в двух видах: рибоза (молекула содержит 5 атомов углерода, тогда как у глюкозы их шесть) и дезоксири-боза. Соответственно этим двум сахарам существует и два типа нуклеиновых кислот: рибонуклеиновая (РНК) и де-зоксирибонуклеиновая (ДНК). Вклетке ДНК содержится главным образом в ядре, а РНК - в цитоплазме. В качестве азотистых оснований в состав нуклеотидов входят пуриновые и пиримидиновые основания (основаниями они названы за свои основные свойства, т.е. способность взаимодействовать с кислотами с образованием солей). ДНК содержит два пурина - а"денин (А) и гуанин (Г) и два пиримидина - цитозин (Ц) и тимин (Т). В состав РНК входят те же самые основания, только вместо тимина - урацил (У). Таким образом, в составе нуклеиновых кислот находятся четыре типа нуклеотидов, различающихся между собой лишь азотистыми основаниями. Причем в ДНК число пуринов всегда равно числу пиримидинов и число А равно числу Т, а число Г числу Ц. Эта особенность связана со структурой молекулы ДНК. Впервые модель молекулы ДНК была предложена в 1953 г. американским ученым-химиком Д. Уотсоном и английским биохимиком Ф. Криком. Согласно этой модели, молекула ДНК состоит их двух спирально закрученных вокруг друг друга нитей. Расстояние между этими нитями всегда строго постоянно (около 2,0 нм). Сами же нити представляют собой цепочки нуклеотидов, число которых колеблется от 77 до десятков тысяч. Соединение нуклеотидов в цепочки осуществляется через фосфатные и сахарные группы при помощи сильных химических связей. Более слабые водородные связи соединяют азотистые основания противоположных цепочек. Причем более крупные пурины соединяются всегда с пири-мидинами, а точнее, аденин (А) соединяется всегда с ти-мином (Т), в молекуле РНК - с урацилом (У), а гуанин (Г)-с цитозином (Ц). Именно в этом соотношении азотистые основания укладываются в строго отмеренном для них пространстве. Таким образом, если на каком-то участке одной цепи ДНК нуклеотиды располагаются в следующем порядке: Ц - Ц - Г - А - А - Г - Т. . . и т. д.,- то в противоположной цепочке будут соответственно этим основания располагаться так: Г - Г-- Ц - Т - Т - Ц - А. Этот принцип расположения нуклеотидов - принцип дополнительности - играет громадную роль при синтезе молекулы РНК (транскрипция) и синтезе новых молекул ДНК (репликация), осуществляемом при делении клеток. Последовательность нуклеотидов в молекуле ДНК на первый взгляд кажется случайной, но это не так. Именно она и определяет специфичность белка. Говоря современным языком, информация о будущей молекуле белка, ее «проект» и «конструкция» записаны в молекуле ДНК точно так же, как на телетайпной ленте записывается какое-либо сообщение. Эта запись, как мы уже отмечали, ведется на особом «нуклеиновом языке», состоящем всего из четырех «букв» - нуклеотидов, «слова» же этого языка трехбуквенные. Сочетание трех азотистых оснований, поскольку нуклеотиды отличаются между собой лишь азотистыми основаниями, представляет собой информационную единицу, или кодовое слово. Эти трехбуквенные «слова» называют «триплетами». Каждый триплет определяет конкретную аминокислоту. Например, ЦГУ означает аминокислоту аланин, а ГАУ - аспарагиновую кислоту. Теперь ответим на вопрос: какое возможно количество комбинаций триплетов и хватит ли их для обозначения каждой из 20 существующих аминокислот? Простой арифметический подсчет показывает, что возможное число триплетов из четырех нуклеотидов - 64 (4 3), число аминокислот - всего лишь 20. Для чего же нужны «лишние» 44 триплета? В настоящее время это еще неизвестно. Be-" роятно, некоторые триплеты служат знаками «препинания», а скорее всего каждая аминокислота может кодироваться несколькими триплетами. Например, уже установлено, что аланин обозначается четырьмя кодовыми словами: АУЦ, ГЦУ, ГЦЦ, ГЦГ. Представленная нами модель молекулы ДНК совсем не отвечает на вопрос: как информация, заключенная в ней, достигает «белковых фабрик» - рибосом, находящихся в цитоплазме далеко от ядра - местонахождения ДНК? В этом большую помощь оказывает другая нуклеиновая кислота - РНК Существует три вида РНК - информационная (матричная), рибосомная и транспортная: иРНК (мРНК) ", рРНК и тРНК соответственно. Молекулы мРНК и рРНК представляют собой одинарные нуклеотидные цепочки. В отличие от цепей ДНК они значительно короче, молекулярная масса их также значительно меньше. Цепочки тРНК еще короче, чем у мРНК и рРНК, они состоят всего из нескольких десятков нуклеотидов. Один из концов тРНК представляет --собой своеобразный «крючок», который «цепляет» аминокислоты. На другом конце тРНК расположен триплет, который соответствует только одной из 20 аминокислот. Например, если на одном из концов тРНК содержится триплет УУУ (У-урацил), то другой конец служит для прикрепления аминокислоты - фенилаланина. Таким образом, для каждой аминокислоты существует своя транспортная РНК, которая осуществляет траспортировку соответствующей аминокислоты к рибосомам. Рибосомы - микроскопические органоиды клеток - поистине являются «белковыми фабриками», производящими каждую четверть секунды готовую белковую молекулу. Контролирует синтез молекул информационная РНК (мРНК). Главный «распорядитель» биосинтеза белка - ядерная ДНК, здесь в ядре хранятся «модели» белковых Молекул. Информация, закодированная в молекуле ДНК, переносится в рибосомы с помощью мРНК, которую ДНК синтезирует по своему «образу и подобию». Таким образом,биосинтез белка начинается с синтеза информационной РНК Этот процесс осуществляется на одном из участков ДНК, соответствующих определенному белку. Мы теперь знаем, что каждая аминокислота кодируется сочетанием трех азотистых оснований - триплетов. Триплетная цепочка мРНК строится на молекуле ДНК на основе принципа дополнительности азотистых соединений (см. выше). Поэтому, если порядок азотистых оснований в молекуле ДНК выглядит так: АГГЦТАТЦГА и т. д., то в молекуле РНК порядок азотистых оснований будет следующим (А-У, Г-Ц): УЦЦГАУАГУУ и т.д. Следовательно, мРНК представляет собой своеобразный «негатив» с участка молекулы ДНК- Далее мРНК с помощью ферментов отделяется от молекулы ДНК и направляется в рибосомы. Здесь мРНК прикрепляется к рибосоме, где, как установлено в последнее время, фиксируются лишь два триплета мРНК. Как только триплеты мРНК занимают на рибосоме соответствующее им место, к ним направляются молекулы тРНК, каждая со своей аминокислотой. При этом тРНК подходят к определенному участку мРНК и после соединения аминокислот (аминокислоты всегда соединяются друг с другом пептидной связью: аминогруппа конца одной аминокислоты соединяется с карбоксильной группой конца другой аминокислоты) информационная РНК передвигается в рибосоме на один триплет.Молекула тРНК, доставившая первую аминокислоту в будущую аминокислотную цепочку, освобождается, чтобы заполучить новую аминокислоту, запас которых в клетке пополняется в результате процессов питания. Триплет 2 теперь перемещается в рибосоме на место триплета 1, а триплет 3 оказывается на месте триплета 2, к нему тотчас подходит новая тРНК и новая аминокислота ставится на свое место. «Шаг за шагом» продвигается молекула мРНК вдоль поверхности рибосомы, и одновременно строится определенная аминокислотная цепь, так называемая первичная аминокислотная последовательность. Как только нужная аминокислотная цепь оказывается «сшитой», она отделяется от рибосомы и затем уже свертывается, образуя вторичные и третичные структуры белковых молекул, определяющие их форму. Полипептидные цепи могут соединяться друг с другом с образованием четвертичной структуры белка (так, например, образуется гемоглобин). Белковый синтез идет очень быстро: за одну минуту могут соединяться до 5-6 тыс. аминокислот. Столь высокие темпы биохимических реакций в клетке пока еще трудно объяснить. Очевидно, на скорость химических процессов оказывают влияние ферменты и ряд других факторов, найти которые является задачей будущего. Посколькуо жизньмРНК длится десятки минут, а построение простой молекулы белка осуществляется за четверть секунды, можно предположить, что одна молекула мРНК участвует в синтезе многих одинаковых белковых молекул. Действительно, обычно одна молекула мРНК участвует в синтезе 20-30 белковых молекул. Более того, одна и та же молекула мРНК может одновременно участвовать в синтезе нескольких белковых молекул. Свободный участок мРНК, прошедший одну рибосому, вновь связывается со следующей рибосомой, и, таким образом, объединенными оказываются 5-7 рибосом (полисома), где и синтезируются одинаковые белковые молекулы. Процессы биосинтеза белка идут всегда с затратой энер-и, для образования каждой связи между аминокислотой и тРНКтребуется одна молекула аденозинтрифосфор-ной кислоты (АТФ), являющейся универсальным переносчиком энергии, запас которой пополняется в клетке с помощью митохондрий.

ПРОЦЕССИНГ

(англ. processing - обработка, переработка, от лат. procedo - прохожу, продвигаюсь), совокупность реакций, ведущих к превращению первичных продуктов транскрипции и трансляции в функционирующие молекулы.

Транскри́пция (от лат. transcriptio - переписывание) - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Трансляцией (от лат. translatio - перевод) называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определённый белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства)

О регуляторных генах мы знаем значительно меньше, чем об остальных. На сегодняшний день выделяют следующие группы регуляторных генов:

Гены репликации, содержащие сайты отвечающие за начало и конец репликации ДНК.

Гены рекомбинации, содержащие специфические сайты распознаваемые рекомбинационными ферментами.

Гены сегрегации, которые определяют взаимодействие хромосом с аппаратом веретена в процессе мейоза и митоза.

Истинное количество регуляторных генов и многие их функции не известны.

Свойства гена

  1. дискретность - несмешиваемость генов;
  2. стабильность - способность сохранять структуру;
  3. лабильность - способность многократно мутировать;
  4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;
  5. аллельность - в генотипе диплоидных организмов только две формы гена;
  6. специфичность - каждый ген кодирует свой признак;
  7. плейотропия - множественный эффект гена;
  8. экспрессивность - степень выраженности гена в признаке;
  9. пенетрантность - частота проявления гена в фенотипе;
  10. амплификация - увеличение количества копий гена.

15.Геноти́п - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Феноти́п (от греческого слова phainotip - являю, обнаруживаю) - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).