Психология  Истории Обучение 

При полном доминировании рецессивный ген подавляется доминантным. Виды доминантности генов: полное, неполное и кодоминирование

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Полное доминирование – когда один доминантный аллель полностью подавляет проявление рецессивного аллеля, например, желтая окраска горошин доминирует над зеленой.

Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. Примером расщепления при неполном доминировании может служить наследование окраски цветков Ночной красавицы.

При скрещивании растений с красными цветками (АА) и растений с белыми (аа) гибриды F1 имеют розовые цветки (Аа). Таким образом, имеет место неполное доминирование; в F2 наблюдается расщепление 1: 2: 1 как по фенотипу, так и по генотипу. P>Кроме полного и неполного доминирования известны случаи отсутствия доминантно-рецессивных отношений или кодоминирования. При кодоминировании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака.

Примером этой формы взаимодействия аллелей служит наследование групп крови человека по системе АВ0, детерминируемых геном I. Существует три аллеля этого гена Io, Ia, Ib, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно. До этого примера мы говорили о генах, существующих только в двух разных аллельных формах. Однако многие гены состоят из сотен пар нуклеотидов, так что мутации могут проходить во многих участках гена и порождать множество различных его аллельных форм. Так как в каждой из гомологичной хромосом имеется по одному аллельному гену, то, разумеется, диплоидный организм имеет не более двух из серии аллелей генофонда популяции.

Конец работы -

Эта тема принадлежит разделу:

Основные понятия генетики наследственность, наследование, доминантность, рецессивность, аллельные гены, гомо- и гетерозиготность

Генетика наука о законах наследственности и изменчивости организмов и методах управления ими... Наследственность свойство организмов обеспечивать материальную и... Наследование передача генетической информации генетических признаков от одного поколения организмов к другому...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие о фенотипе и генотипе. Важнейшие свойства генов.
Обычно Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям: 1. По источнику информации (генотип определяется при изучении ДНК особи,

Свойства гена
1. дискретность - несмешиваемость генов; 2. стабильность - способность сохранять структуру; 3. лабильность - способность многократно мутировать; 4. множественный аллелизм

Законы Г.Менделя, их цитологические основы.
Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга

Кодоминирование и неполное доминирование
Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования

Основные положения теории наследственности Менделя
В современной интерпретации эти положения следующие: · За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в

Статистический характер законов Менделя. Правила вероятности.
В опытах с горохом при моногибридном скрещивании Г.Мендель получил соотношение по изучаемому признаку 3,0095: 1,0, т.е. близкое к теоретически ожидаемому 3:1. Учёный оперировал сравнительно крупны

Менделирующие признаки человека.
Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно (от греч.monos-оди

Закономерности наследования групп крови у человека в системе АВО и резус-фактор.
Система групп крови ABO - это основная система групп крови, которая используется при переливании крови у людей. Ассоциированные анти-А и анти-В-антитела (иммуноглобулины

Типы взаимодействия генов из разных аллельных пар (комплементарность, полимерия, эпистаз)
Комплементарность - вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей. Эпист

Генетический механизм, лежащий в основе наследования признаков при взаимодействии генов.
Под действием генов (экспрессией, выражением генов) понимают способность их контролировать свойства или, точнее, синтез белков. Для действия генов характерен ряд особенностей, важнейшей из которых

Роль наследственности и среды в формировании фенотипа. Понятие экспрессивности и пенетрантности.
Важной задачей генетики является уточнение роли наследственных и внешнесредовых факторов в формировании того или иного признака. Фактически необходимо оценить степень обусловленности ко-лич

Хромосомная теория наследственности.
Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основ

Полное и неполное сцепление генов. Кроссинговер.
СЦЕПЛЕНИЕ ГЕНОВ явление, в основе которого лежит локализация генов в одной хромосоме. При полном сцепление генов образуются только два типа гамет (с исходными сочетаниями сцепленных генов), при неп

Особенности наследования признаков, сцепленных с полом.
Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, на

Биологическое значение явления сцепления генов и кроссинговера
Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контрол

Основные направления генетики человека
Основополагающие законы генетики были вскрыты чешским естествоиспытателем Г. Менделем при скрещивании различных рас гороха (1865). Однако принципиальные результаты его опытов были поняты и оценены

Генетика человека и евгенические программы.
Евге́ника (от греч. ευγενες - «хорошего рода», «породистый») - учение о селекции применительно к человеку, а также о путях улучшения его нас

Методы изучения наследственности человека
Генеалогический методЭтот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родослов

Популяционно-статистический метод. Его возможности и значение.
Этот метод позволяет изучить распространение отдельных генов в человеческих популяциях. Обычно производится непосредственное выборочное исследование части популяции либо изучают архивы больниц, род

Закон Харди-Вайберга и возможности его применения в медицинской генетике.
Закон Харди - Вайнберга - это закон популяционной генетики - в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими

Изменчивость, ее формы.
Изменчивость организмов проявляется в разнообразии особей (одного вида, породы или сорта), отличающихся друг от друга по комплексу признаков, свойств и качеств. Причины тому могут быть разными. В о

Наследственная (генотипическая) изменчивость
В данном случае происходит изменение генотипа и как результат меняются признаки (или их комбинации). Новые признаки наследуются, т. е. передаются последующим поколениям организмов.

Генные мутации и их последствия для человека. Механизмы возникновения генных мутаций.
Мутации это изменения генетического материала особи. Они происходят случайно и могут привести к появлению белков с иным аминокислотным составом и возникновению совершенно новых признаков или свойст

Виды хромосомных мутаций и их последствия для человека.
Хромосомные мутации -- значительное изменение структуры хромосомы, обычно затрагивающее несколько генов этой хромосомы. Хромосомные мутации приводят к изменению числа, размеров и организации хромос

Виды геномных мутаций и их последствия для человека.
Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом (рис. 118 , Б). Разные виды геномных мутаций называют гетероплои

Основные механизмы возникновения хромосомных и геномных мутаций
Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в о

Значение соматических мутаций для человека.
Соматические мутации- мутации, возникающие в клетках тела и обусловливающие мозаичность организма, т. е. образование в нём отдельных участков тела, тканей или клеток с отличным от остальных набором

Медико-генетический аспект брака. Понятие инбридинга, аутбридинга, инцестных браков.
Медико-генетическое консультирование - специализированная медицинская помощь - наиболее распространенная форма профилактики наследственных болезней. Генетическое консультирование - состоит из

Принципы медико-генетического консультирования.
Медико-генетическое консультирование - специализированный вид медицинской помощи - является наиболее распространенным видом профилактики наследственных болезней. Суть его заключается в определении

Понятие о фенокопиях и генокопиях
Генокопия - миметические гены, возникноваение сходных фенотипического признаков под влиянием генов, расположенных в разных участках хромосомы или в разных хромосомах (т. н. мутантные аллели)

Доминантный признак не всегда полностью подавляет рецессивный, поэтому возможно появление промежуточных признаков у гибридов. Это явление получило название неполное доминирование.
Так, например, при скрещивании двух чистых линий ночной красавицы с красными и белыми цветками первое поколение гибридов оказывается розовым. Происходит неполное доминирование признака окраски, и красный цвет лишь частично подавляет белый. Во втором поколении расщепление признаков по фенотипу оказывается равным расщеплению по генотипу.

У человека неполное доминирование проявляется при наследовании структуры волос. Ген курчавых волос доминирует над геном прямых волос не в полной мере. И у гетерозигот наблюдается промежуточное проявление признака - волнистые волосы.

Иногда расщепление признаков во втором поколении может отклоняться от ожидаемых (3:1 - при полном доминировании, 1:2:1 - при неполном доминировании) результатов. Это связано с тем,что в некоторых случаях гомозиготы по одному из признаков оказываются нежизнеспособными. В этом случае говорят о летальных генах. Один ген может оказывать влияние на другие признаки, в результате чего снижается работоспособность. Например, серые каракульские овцы, гомозиготные по доминантному признаку серой окраски, погибают после рождения из-за недоразвития желудка. Другим примером доминантного летального гена является брахидактилия у человека (укороченные пальцы). Гомозиготы по данному гену погибают на ранних стадиях развития зародыша, а признак проявляется только у гетерозигот.

Примером рецессивного летального гена является ген серповидно - клеточной анемии у человека. В норме эритроциты человека имеют форму двояковогнутого диска. При серповидно - клеточной анемии они приобретают вид серпа, а физиологический эффект выражается острой анемией и снижением количества кислорода, переносимого кровью. У гетерозигот заболевание не проявляется, эритроциты тем не менее все же имеют измененную форму. Гомозиготы по этому признаку в 95% случаев гибнут в раннем возрасте из - за кислородной недостаточности, а гетерозиготы вполне жизнеспособны.

Чтобы понять, что же такое кодоминирование в генетике, разберем возможные типы взаимодействия Согласно гипотезе чистоты гамет, предложенной Грегором Менделем, при образовании гаметы в нее попадает только один из двух аллельных генов каждого родительского организма, отвечающий за этот признак. Так в гамете образуется нормальный диплоидный набор аллельных генов. Далее во взаимодействии может проявиться полное доминирование, когда подавит рецессивный, неполное доминирование и кодоминирование.

Неполное доминирование

В этом случае доминантный аллель не полностью подавляет рецессивный, в результате получается новый, промежуточный признак. Известным примером неполного доминирования является окраска цветков некоторых цветов, например космеи. Допустим, есть гомозиготный красный цветок с генотипом (АА) (чистая линия) и белый цветок (аа), тоже чистая линия. При их скрещивании появляются цветы с розовой окраской - пример кодоминирования. Их генотип имеет вид Аа, но и доминантный, и рецессивный аллель проявляются. При скрещивании получился промежуточный - розовая окраска.

Кодоминирование

Другой тип экспрессии генов - кодоминирование. Это явление похоже на неполное доминирование, но все же имеет одно существенное отличие. Кодоминирование - взаимодействие генов, при котором противоположные признаки проявляются одновременно, но не смешиваются и не производят промежуточный признак.

При скрещивании белого цветка петунии с красным может получиться красный, розовый, белый или двухцветный. Цветок с красными и белыми полосами появляется в результате такого процесса, как кодоминирование. Это самый распространенный пример такого взаимодействия.


Кодоминирование характерно и для других растений.

Взаимодействие неаллельных генов

Стоит сказать, что только к аллельным генам применимы такие понятия, как и кодоминирование. Примеры и многочисленные эксперименты подтверждают, что в случае неаллельных генов называют другие типы взаимодействия - кооперация, эпистаз, комплементарность, полимерия. Примером именно полимерии, а не неполного доминирования, является наследование цвета кожи человека.

Кодоминирование у человека

Другой простой, но яркий пример кодоминирования - наследование групп крови. Как известно, существует четыре группы крови. Первая группа О(І) проявляется при наличии в генотипе двух гомозиготных рецессивных генов О. вторая группа А(ІІ) может проявиться и при генотипе АО или АА. В фенотипе при этом будет проявляться только доминантный ген А, который полностью подавит рецессивный ген. Похожая ситуация будет и для третьей группы крови В(ІІІ), которая формируется при генотипе ВВ или ВО. В подавит рецессивный ген О и проявится как результат полного доминирования. Но что будет при скрещивании гомозигот с генотипами АА и ВВ? И ген А, и ген В доминантны, значит ни один из них не может полностью подавить другой и проявится самостоятельно. В этом случае с вероятностью 100% получится четвертая группа крови - АВ, имеет место кодоминирование. Это же происходит при скрещивании гетерозигот АО и ВО, когда возможен любой результат:

F1: АО(II), АВ(IV), ВО(III), ОО(I).

Именно поэтому группа крови ребенка может не совпадать с группой крови родителей. Из примера видно, что кодоминирование проявляется не только в окраске растений.

Кодоминорование и мутации

Стоит оговориться, что проявление обоих признаков - это не всегда кодоминирование. Это доказывает редкая генетическая особенность, свойственная людям и некоторым животным - гетерохромия (несовпадение окраски радужной оболочки глаз). Гетерохромия бывает полная, например, когда один глаз карий, а второй голубой, или частичной, например когда на зеленой оболочке есть серый сегмент. Гетерохромия, несмотря на кажущуюся аналогию с окраской цветов, пример не кодоминирования, а Нарушение пигментации кожи - также не кодоминирование, о чем говорит генетика. Кодоминирование в этом случае путают с заболеваниями.

Кодоминирование и первый закон Менделя

Явления кодоминирования и неполного доминирования, на первый взгляд, говорят о том, что первый о единообразии гибридов не выполняется. Грегор Мендель в своих экспериментах имел дело с горохом, для которого не свойственно ни кодоминирование, ни частичное доминирование, а только полное доминирование. В тех случаях, если смешанный признак или их одновременное проявление невозможно, его формулировка была абсолютно правильной. Спустя почти столетие, когда были исследованы и кодоминирование, и неполное доминирование, в первый закон была внесена поправка, гласившая, что при скрещивании гомозиготных гибридов первого поколения с противоположными признаками во втором поколении появляются гибриды, по этому признаку идентичные. Проявляется доминантный признак в случае полного доминирования или смешанный признак - в случае неполного доминирования.

Можно воспользоваться примером с наследованием группы крови, чтобы наглядно продемонстрировать правильность дополненного первого закона Менделя:

F1: АВ, АВ, АВ, АВ.

Результатом скрещивания двух чистых линий будет гетерозиготная особь, в фенотипе которой проявляется смешанный признак, так как имеет место кодоминирование. Это соответствует внесенной поправке.

Вы когда-нибудь задумывались, почему у вас есть такой особый цвет глаз или тип волос? Все это связано с передачей генов. Как обнаружил Грегор Мендель, черты наследуются при помощи передачи генов от родителей к их потомкам. представляют собой участки ДНК, расположенные на наших . Они передаются от одного поколения к другому через . Ген для конкретного признака может существовать в более чем одной форме или аллеле. Для каждой характеристики или признака обычно наследуют два аллеля. Парные аллели могут быть гомозиготными (с идентичными аллелями) или гетерозиготными (с разными аллелями) для данного признака.

Когда пары аллелей одинаковы, генотип этого признака идентичен, а или характеристика, которая наблюдается, определяется гомозиготными аллелями. Когда парные аллели для признака различные или гетерозиготные, возможно несколько вариантов. Гетерозиготные аллели, которые обычно наблюдаются в клетках животных, включают полное доминирование, неполное доминирование и кодоминирование.

Полное доминирование

При этом виде доминирования один аллель является доминирующим, а другой рецессивным. Доминантный аллель полностью маскирует рецессивный. Фенотип определяется доминирующим аллелем. Например, гены для формы семени в растениях гороха существуют в двух формах: гладкая (R) и морщинистая (r). В растениях гороха, которые являются гетерозиготными по форме семени, гладкий горох является доминирующим по отношению морщинистому семени, а генотип является (Rr).

Неполное доминирование


При неполном доминировании один аллель для конкретного признака не является полностью доминирующим над другим аллелем. Это приводит к третьему фенотипу, в котором наблюдаемые характеристики представляют собой смесь доминирующих и рецессивных фенотипов. Пример неполного доминирования проявляется в наследовании типа волос. Кудрявый тип волос (CC) является доминирующим для прямого типа волос (сс). Человек, гетерозиготный по этому признаку, будет иметь волнистые волосы (Cc).

Доминирующая фигурная характеристика не полностью выражена по прямой характеристике, создавая промежуточную характеристику волнистых волос. При неполном доминировании одна характеристика может быть несколько более заметной, чем другая для данного признака. Например, у человека с волнистыми волосами может быть больше или меньше волн, чем у другого с волнистыми волосами. Это указывает на то, что аллель для одного фенотипа выражается немного больше, чем аллель для другого фенотипа.

Кодоминирование


Нормальная и серповидная формы эритроцита

При совместном доминировании ни один из аллелей не является доминирующим, но оба аллеля для конкретного признака полностью выражены. Это приводит к третьему фенотипу, в котором наблюдается более одного фенотипа. Пример кодоминирования наблюдается у индивидов с чертой серповидной клетки.

Наличие серповидной клетки связано с развитием эритроцитов с аномальной формой. Нормальные эритроциты имеют двояковогнутую, дискообразную форму и содержат огромное количество белка, называемого гемоглобином. Гемоглобин помогает красным клеткам связываться и переносить кислород в клетки и ткани организма. Серповидная клетка является результатом мутации гена гемоглобина. Этот гемоглобин считается ненормальным и заставляет клетки крови принимать серповидную форму.

Серповидные клетки часто застревают в кровеносных сосудах и блокируют нормальный кровоток. Те, которые несут черту серповидной клетки, гетерозиготные для гена гемоглобина и наследуют один нормальный ген гемоглобина и один серповидный ген гемоглобина. У них нет болезни, потому что аллель гемоглобина серпа и нормальный гемоглобиновый аллель являются кодоминантными по отношению к форме клеток. Это означает, что у носителей серповидных клеток образуются как нормальные эритроциты, так и серповидные.

Неполное доминирование и кодоминирование


Розовый цвет тюльпанов представляет собой смесь выражения обоих аллелей (красного и белого), в результате чего образуется промежуточный фенотип (розовый). Это неполное доминирование. В красно-белом тюльпане оба аллеля полностью выражены. Это свидетельствует о кодоминировании.

Люди часто путают неполное доминирование и кодоминирование. Хотя они и являются примерами наследования, но отличаются выражением генов. Ниже перечислены некоторые различия между ними:

Экспресивность аллеля

  • Неполное доминирование: один аллель для определенного признака не полностью выражен над его парным аллелем. Например, цвет тюльпана, аллель для красного цвета (R) не полностью маскирует аллель для белого цвета (r).
  • Кодоминирование: оба аллеля для конкретного признака полностью выражены. Аллель для красного цвета (R) и аллель для белого цвета (r) выражены и видны в гибриде.

Зависимость аллелей

  • Неполное доминирование: влияние одного аллеля зависит от его парного аллеля для данного признака.
  • Кодоминирование: влияние одного аллеля не зависит от его парного аллеля для данного признака.

Фенотип

  • Неполное доминирование: Гибридный фенотип представляет собой смесь обеих аллелей, что приводит к третьему промежуточному фенотипу. Пример: Красный цветок (RR) X Белый цветок (rr) = Розовый цветок (Rr)
  • Кодоминирование: гибридный фенотип представляет собой комбинацию выраженных аллелей, что приводит к третьему фенотипу, который включает оба фенотипа. Пример: Красный цветок (RR) X Белый цветок (rr) = Красно-белый цветок (Rr)

Наблюдаемые характеристики

  • Неполное доминирование: фенотип может быть выражен в разной степени в гибриде. (Пример: розовый цветок может иметь более легкую или более темную окраску в зависимости от количественной выраженности одного аллеля по сравнению с другим).
  • Кодоминирование: оба фенотипа полностью выражены в гибридном генотипе.

Краткий вывод

При неполном доминировании один аллель для конкретного признака не является полностью доминирующим над другим аллелем. Это приводит к третьему фенотипу, в котором наблюдаемые характеристики представляют собой смесь доминирующих и рецессивных фенотипов.

При кодоминировании ни один аллель не является доминирующим, но оба аллеля для конкретного признака полностью выражены. Это приводит к третьему фенотипу, в котором наблюдается более одного фенотипа.