Психология  Истории Обучение 

Числовым знакопеременным рядом. Сходимость знакопеременных рядов

Знакочередующимися рядами называются ряды, члены которых попеременно то положительны, то отрицательны . Чаще всего рассматриваются знакочередующиеся ряды, в которых члены чередуются через один: за каждым положительным следует отрицательный, за каждым отрицательным - положительный. Но встречаются знакочередующиеся ряды, в которых члены чередуются через два, три и так далее.

Рассмотрим пример знакочередующегося ряда, начало которого выглядит так:

3 − 4 + 5 − 6 + 7 − 8 + ...

и сразу же общие правила записи знакочередующихся рядов.

Как и в случае любых рядов, для продолжения данного ряда нужно задать функцию, определяющую общий член ряда. В нашем случае это n + 2 .

А как задать чередование знаков членов ряда? Умножением функции на минус единицу в некоторой степени. В какой степени? Сразу же подчеркнём, что не любая степень обеспечивает чередование знаков при членах ряда.

Допустим, мы хотим, чтобы первый член знакочередующегося ряда был с положительным знаком, как это и имеет место в приведённом выше примере. Тогда минус единица должна быть в степени n − 1 . Начните подставлять в это выражение числа начиная с единицы и вы получите в качестве показателя степени при минус единице то чётное, то нечётное число. Это и есть необходимое условие чередования знаков! Такой же результат получим при n + 1 . Если же мы хотим, чтобы первый член знакочередующегося ряда был с отрицательным знаком, то можем задать этот ряд умножением функции общего члена на единицу в степени n . Получим то чётное, то нечётное число и так далее. Как видим, уже описанное условие чередования знаков выполнено.

Таким образом, можем записать приведённый выше знакочередующийся ряд в общем виде:

Для чередования знаков члена ряда степень минус единицы может быть суммой n и любого положительного или отрицательного, чётного или нечётного числа. То же самое относится к 3n , 5n , ... То есть, чередование знаков членов знакочередующегося ряда обеспечивает степень при минус единицы в виде суммы n , умноженного на любое нечётное число и любого числа.

Какие степени при минус единице не обеспечивают чередование знаков членов ряда? Те, которые присутствуют в виде n , умноженного на любое чётное число, к которому прибавлено любое число, включая нуль, чётное или нечётное. Примеры показателей таких степеней: 2n , 2n + 1 , 2n − 1 , 2n + 3 , 4n + 3 ... В случае таких степеней в зависимости от того, с каким числом складывается "эн", умноженное на чётное число, получаются или только чётные, или только нечётные числа, что, как мы уже выяснили, не даёт чередования знаков членов ряда.

Знакочередующиеся ряды - частный случай знакопеременных рядов . Знакопеременные ряды - это ряды с членами произвольных знаков , то есть такими, которые могут быть положительными и отрицательными в любой последовательности. Пример знакопеременного ряда:

3 + 4 + 5 + 6 − 7 + 8 − ...

Далее рассмотрим признаки сходимости знакочередующихся и знакопеременных рядов. Условную сходимость знакочередующихся рядов можно установить при помощи признака Лейбница. А для более широкого круга рядов - знакопеременных (в том числе и знакочередующихся) - действует признак абсолютной сходимости.

Сходимость знакочередующихся рядов. Признак Лейбница

Для знакочередующихся рядов имеет место следующий признак сходимости – признак Лейбница.

Теорема (признак Лейбница). Ряд сходится, а его сумма не превосходит первого члена, если одновременно выполняются следующие два условия:

  • абсолютные величины членов знакочередующегося ряда убывают: u 1 > u 2 > u 3 > ... > u n > ... ;
  • предел его общего члена при неограниченном возрастании n равен нулю.

Следствие. Если за сумму знакочередующегося ряда принять сумму его n членов, то допущенная при этом погрешность не превзойдёт абсолютной величины первого отброшенного члена.

Пример 1. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

а предел общего члена

равен нулю:

Оба условия признака Лейбница выполнены, поэтому ряд сходится.

Пример 2. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Сначала докажем, что :

, .

Если N = 1 , то для всех n > N выполняется неравенство 12n − 7 > n . В свою очередь для каждого n . Поэтому , то есть члены ряда по абсолютному значению убывают. Найдём предел общего члена ряда (применяя правило Лопиталя ):

Предел общего члена равен нулю. Оба условия признака Лейбница выполнены, поэтому ответ на вопрос о сходимости - положительный.

Пример 3. Исследовать сходимость ряда

Решение. Дан знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница, то есть требование . Чтобы требование выполнялось, необходимо, чтобы

Мы убедились, что требование выполняется для всех n > 0 . Первый признак Лейбница выполняется. Найдём предел общего члена ряда:

.

Предел не равен нулю. Таким образом, второе условие признака Лейбница не выполняется, поэтому о сходимости не может быть и речи.

Пример 4. Исследовать сходимость ряда

Решение. В данном ряде за двумя отрицательными членами следуют два положительных. Данный ряд - также знакочередующийся. Выясним, выполняется ли первое условие признака Лейбница.

Требование выполняется для всех n > 1 . Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена (применяя правило Лопиталя):

.

Получили нуль. Таким образом, оба условия признака Лейбница выполняются. Сходимость имеет место быть.

Пример 5. Исследовать сходимость ряда

Решение. Это знакочередующийся ряд. Выясним, выполняется ли первое условие признака Лейбница. Так как

,

Так как n 0 , то 3n + 2 > 0 . В свою очередь, для каждого n , поэтому . Следовательно, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена ряда (применяя правило Лопиталя):

.

Получили нулевое значение. Оба условия признака Лейбница выполняются, поэтому данный ряд сходится.

Пример 6. Исследовать сходимость ряда

Решение. Выясним, выполняется ли первое условие признака Лейбница для этого знакочередующегося ряда:

Члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

.

Предел общего члена не равен нулю. Второе условие признака Лейбница не выполняется. Следовательно, данный ряд расходится.

Признак Лейбница является признаком условной сходимости ряда . Значит, выводы о сходимости и расходимости рассмотренных выше знакочередующихся рядов можно дополнить: эти ряды сходятся (или расходятся) условно.

Абсолютная сходимость знакопеременных рядов

Пусть ряд

– знакопеременный. Рассмотрим ряд, составленный из абсолютных величины его членов:

Определение. Ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов . Если же знакопеременный ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то такой знакопеременный ряд называется условно или неабсолютно сходящимся .

Теорема. Если ряд абсолютно сходится, то он сходится и условно.

Пример 7. Установить, сходится ли ряд

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд , в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Напишем абсолютные значения первых пяти членов ряда:

.

Как видим, члены ряда по абсолютному значению убывают. Первый признак Лейбница выполняется. Выясним, равен ли нулю предел общего члена:

Получили нулевое значение. Оба условия признака Лейбница выполняются. То есть по признаку Лейбница сходимость имеет место быть. А соответствующий ряд с положительными членами расходится. Следовательно, данный ряд сходится условно.

Пример 8. Установить, сходится ли ряд

абсолютно, условно, или расходится.

Решение. Соответствующим данному ряду рядом с положительными членами является ряд Это обобщённый гармонический ряд, в котором , поэтому ряд расходится. Проверим соблюдение условий признака Лейбница.

Рассмотрим ряды, члены которых имеют произвольные знаки, такие ряды будем называть знакопеременными (заметим, что в математической литературе термины знакопеременный и знакочередующийся ряд – о таких рядах речь пойдет позже – означают одно и то же; но мы здесь приняли терминологию, используемую Пискуновым Н.С. в его «Дифференциальном и интегральном исчислении» только для сокращения записи: вместо слов «ряд, члены которого имеют произвольные знаки» будем говорить «знакопеременные ряды»). Если заданный ряд имеет только конечное число отрицательных членов, то, отбросив их, можно свести дело к исследованию ряда с положительными членами. То же касается ряда, в котором только конечное число положительных членов. Поэтому будем заведомо предполагать, что среди членов ряда есть бесконечное количество как положительных, так и отрицательных членов.

Справедлива следующая теорема

Теорема 30. 8. (признак абсолютной сходимости)

Пусть дан ряд с членами произвольных знаков. Если сходится ряд

составленный из абсолютных величин его членов, то сходится и данный ряд. При этом .

Определение 30.4. Если ряд сходится и сходится ряд , то ряд называется абсолютно сходящимся . Если ряд сходится, а ряд расходится, то ряд называется условно (не абсолютно) сходящимся .

Для выяснения абсолютной сходимости заданного ряда к ряду из его модулей могут быть применены признаки, рассмотренные нами в предыдущем пункте. Но нужно быть осторожным с признаками расходимости: если ряд из модулей расходится, то исходный ряд может и сходиться (условно). Исключение составляют лишь признак Даламбера и радикальный признак Коши, так как когда эти признаки констатируют расходимость ряда , то это означает, что , но тогда и , что означает расходимость ряда .

Сформулируем эти признаки применительно к знакопеременному ряду

Признак Даламбера. , то

при d < 1 ряд сходится абсолютно,

при d > 1 ряд расходится,

при d =1 нужны дополнительные исследования.

Признак Коши радикальный. Если для знакопеременного ряда существует , то

при K < 1 ряд сходится абсолютно,

при K > 1 ряд расходится,

при K = 1 требуются дополнительные исследования

Пример. Исследуем сходимость ряда . Применим к нему признак Коши: – ряд сходится абсолютно.

Среди знакопеременных рядов особую роль играют так называемые знакочередующиеся ряды . Знакочередующимся рядом называют ряд, члены которого поочередно имеют то положительный, то отрицательный знаки (см предыдущий пример). Такой ряд обычно записывают в виде

при этом предполагается, то все а п > 0.

Для знакочередующихся рядов имеет место

Теорема 30.9. (Теорема Лейбница)

Если члены знакочередующегося ряда убывают по абсолютной величине, т.е."п | a n | >| a n +1 |, и , то ряд сходится. При этом сумма ряда по абсолютной величине не превосходит модуля первого члена ряда, т.е. и имеет тот же знак, что и первый член ряда.

Ряд, удовлетворяющий условиям теоремы Лейбница, называют рядом лейбницевского типа.

Пример . Рассмотрим сходимость ряда . Проверим выполнение условий Теоремы 5.9.: | a n | >| a n +1 |, действительно, > "п ³1, а также , значит, ряд сходится. А так как ряд из абсолютных величин этого ряда есть расходящийся гармонический ряд , то исходный ряд сходится условно.

Замечание. Так как любой остаток ряда лейбницевского типа есть также ряд лейбницевского типа, то в случае сходимости ряда, остаток ряда по абсолютной величине не превосходит модуля своего первого члена:

| R n | = |S – S n | £ |a n +1 |.

Это удобно использовать для оценки точности приближенного вычисления суммы данного ряда.

Знакопеременные ряды

Определение 5. Числовые ряды, содержащие как положительные, так и отрицательные члены, называются знакопеременными рядами.

Ряды, все члены которых отрицательные числа, не представляют нового по сравнению со знакоположительными рядами, так как они получаются умножением знакоположительных рядов на 1.

Изучение знакопеременных рядов начнём с частного случая – знакочередующихся рядов.

Определение 6. Числовой ряд вида u 1 -u 2 +u 3 -u 4 +…+ +(- 1) n - 1. u n + …, где u n – модуль члена ряда, называется знакочередующимся числовым рядом.

Теорема 9. (Признак Лейбница)

Если для знакочередующегося числового ряда

Выполняются два условия:

Члены ряда убывают по модулю u 1 >u 2 >…>u n >…,

то ряд (19) сходится, причём его сумма положительна и не превосходит первого члена ряда.

Доказательство . Рассмотрим частичную сумму чётного числа членов ряда S 2 n =(u 1 -u 2)+(u 3 -u 4)+…+(u 2 n -1 -u 2 n).

По условию u 1 >u 2 >…>u 2 n -1 >u 2 n , то есть все разности в скобках положительны, следовательно, S 2 n возрастает с возрастанием n и S 2 n >0 при любом n .

С другой стороны S 2 n =u 1 -[(u 2 -u 3)+(u 4 -u 5)+…+(u 2 n -2 -u 2 n -1)+u 2 n ]. Выражение в квадратных скобках положительно и S 2 n >0, поэтому S 2 n <u 1 для любого n . Таким образом, последовательность частичных сумм S 2 n возрастает и ограничена, следовательно, существует конечный S 2 n =S . При этом 0<S u 1 .

Рассмотрим теперь частичную сумму нечётного числа членов ряда S 2 n +1 =S 2 n +u 2 n +1 . Перейдём в последнем равенстве к пределу при n→∞ : S 2 n +1 = S 2 n + u 2 n +1 =S+ 0=S. Таким образом, частичные суммы как чётного, так и нечётного числа членов ряда имеют один и тот же предел S , поэтому S n =S , то есть данный ряд сходится. Теорема доказана.

Пример.

Исследовать на сходимость ряд

Применим признак Лейбница.

u n = >u n +1 =

Оба условия признака Лейбница выполняются, следовательно, ряд сходится.

Замечания.

1. Теорема Лейбница справедлива и если условие u n >u n + 1 выполняется, начиная с некоторого номера N .

2. Условие u n >u n +1 не является необходимым. Ряд может сходиться, если оно не выполняется. Например, ряд
сходится, как разность двух сходящихся рядов хотя условие u n >u n +1 не выполняется.

Определение 8 . Если знакопеременный ряд сходится, а ряд, составленный из абсолютных величин членов этого ряда, расходится, то говорят, что знакопеременный ряд сходится условно.

Определение 9 . Если сходится и сам знакопеременный ряд и ряд, составленный из абсолютных величин его членов, то говорят, что знакопеременный ряд сходится абсолютно.

Пример .

Установить характер сходимости ряда


Очевидно, что данный ряд сходится по признаку Лейбница. Действительно: и u n =

Ряд, составленный из абсолютных величин членов данного ряда является расходящимся гармоническим рядом. Поэтому данный ряд сходится условно.

Определение 6.1 Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным. Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an ;

Тогда знакочередующиеся ряды и сходятся.

Абсолютная и условная сходимость

Определение 6.2 Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку. Следовательно, данный ряд сходится.

Исследовать на сходимость ряд.

Попробуем применить признак Лейбница:

Видно, что модуль общего члена не стремится к нулю при n > ?. Поэтому данный ряд расходится

Применяя признак Даламбера к ряду, составленному из модулей соответствующих членов, находим

Следовательно, данный ряд сходится абсолютно.

Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Сначала воспользуемся признаком Лейбница и найдем предел. Вычислим этот предел по правилу Лопиталя:

Таким образом, исходный ряд расходится.

Исследовать на сходимость ряд

Общий член данного ряда равен. Применим признак Даламбера к ряду, составленному из модулей:

Следовательно. исходный ряд сходится абсолютно.

Исследовать, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Применяя признак Лейбница, видим, что ряд является сходящимся:

Рассмотрим теперь сходимость ряда, составленного из модулей соответствующих членов. Используя интегральный признак сходимости, получаем

Следовательно исходный ряд сходится условно.

Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Сначала применим признак Лейбница:

Следовательно, данный ряд сходится. Выясним, является ли эта сходимость абсолютной или условной. Воспользуемся предельным признаком сравнения и сравним соответствующий ряд из модулей с расходящимся гармоническим рядом:


Поскольку ряд, составленный из модулей, расходится, то исходный знакочередующийся ряд является условно сходящимся.

1. Ряды с положительными членами. Признаки сходимости

Определить сходимость ряда (1.1) и найти его сумму в случае сходимости непосредственно по определению 1.1 как предела последовательности частичных сумм, весьма затруднительно. Поэтому существуют достаточные признаки определения сходится ряд или расходится. В случае его сходимости приближенным значением его суммы с любой степенью точности может служить сумма соответствующего числа первых n членов ряда.

Здесь будем рассматривать ряды (1.1) с положительными (неотрицательными) членами, т. е. ряды, для которых Такие ряды будем называть положительными рядами.

Теорема 3.1. (признак сравнения)

Пусть даны два положительных ряда

и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство. 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т. е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т. е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Пример 3.1. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося ряда геометрической прогрессии

т. к. , n=1,2,…

Следовательно, по признаку сравнения исходный ряд также сходится.

Пример 3.2. Исследовать на сходимость ряд

Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда

Следовательно, по признаку сравнения исходный ряд расходится.

Теорема 3.2. (Предельный признак Даламбера).

Тогда: 1) при q < 1 ряд (1.1) сходится;

  • 2) при q > 1 ряд (1.1) расходится;

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Пример 3.3. Исследовать на сходимость ряд

Применим предельный признак Даламбера.

В нашем случае.

Пример 3.4. Исследовать на сходимость ряд

Следовательно, исходный ряд сходится.

Пример 3.5. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд расходится.

Замечание. Применение предельного признака Даламбера к гармоническому ряду не дает ответа о сходимости этого ряда, т. к. для этого ряда

Теорема 3.3. (Предельный признак Коши Коши Огюстен Луи (1789 - 1857), французский математик.).

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

  • 2) при q > 1 ряд (1.1) расходится;
  • 3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Пример 3.6. Исследовать на сходимость ряд

Применим предельный признак Коши:

Следовательно, исходный ряд сходится.

Теорема 3.4. (Интегральный признак Коши).

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Пример 3.7. Исследовать на сходимость гармонический ряд

Применим интегральный признак Коши.

В нашем случае функция удовлетворяет условию теоремы 3.4. Исследуем на сходимость несобственный интеграл

Несобственный интеграл расходится, следовательно, исходный гармонический ряд расходится также.

Пример 3.8. Исследовать на сходимость обобщенный гармонический ряд

Функция удовлетворяет условию теоремы 3.4.

Исследуем на сходимость несобственный интеграл

Рассмотрим следующие случаи:

  • 1) пусть Тогда обобщенный гармонический ряд есть гармонический ряд, который расходится, как показано в примере 3.7.
  • 2) пусть Тогда

Несобственный интеграл расходится, и, следовательно, ряд расходится;

3) пусть Тогда

Несобственный интеграл сходится, и, следовательно, ряд сходится.

Окончательно имеем

Замечания. 1. Обобщенный гармонический ряд будет расходиться при, т. к. в этом случае не выполняется необходимый признак сходимости: общий член ряда не стремится к нулю.

2. Обобщенный гармонический ряд удобно использовать при применении признака сравнения.

Пример 3.9. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося обобщенного гармонического ряда

т. к. и параметр

Следовательно, исходный ряд сходится (по признаку сравнения).

Перейдем к рассмотрению рядов, члены которых могут быть как положительными, так и отрицательными.

Своим внеочередным появлением данный раздел обязан многим и многим авторам, читая труды которых так и хотелось запустить оными трудами в самих писателей. Собственно, я планировал выложить данную тему полностью лишь по мере её окончательной готовности, однако ввиду слишком большого количества вопросов по ней, изложу некоторые моменты сейчас. Впоследствии материал будет дополнен и расширен. Начнём с определений.

Ряд вида $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n>0$, называется знакочередующимся.

Знаки членов знакочередующегося ряда строго чередуются:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=u_1-u_2+u_3-u_4+u_5-u_6+u_7-u_8+\ldots $$

Например, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ - знакочередующийся ряд. Бывает, что строгое чередование знаков начинается не с первого элемента, однако для исследования на сходимость это несущественно.

Почему чередование знаков не с первого элемента является несущественным? показать\скрыть

Дело в том, что среди свойств числовых рядов есть утверждение, которое позволяет нам отбрасывать "лишние" члены ряда. Вот это свойство:

Ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится тогда и только тогда, когда сходится любой из его остатков $r_n=\sum\limits_{k=n+1}^{\infty}u_k$. Отсюда следует, что отбрасывание или добавление к некоторому ряду конечного количества членов не изменяет сходимости ряда.

Пусть нам задан некий знакочередующийся ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, и пусть для этого ряда выполнено первое условие признака Лейбница, т.е. $\lim_{n\to{\infty}}u_n=0$. Однако второе условие, т.е. $u_n≥u_{n+1}$, выполняется начиная с некоего номера $n_0\in{N}$. Если $n_0=1$, то мы получаем обычную формулировку второго условия признака Лейбница, посему ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ будет сходиться. Если же $n_0>1$, то разобьём ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$ на две части. В первую часть выделим все те элементы, номера которых меньше $n_0$:

$$ \sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n=\sum\limits_{n=1}^{n_0-1}(-1)^{n+1}u_n+\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n $$

Для ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ выполнены оба условия признака Лейбница, поэтому ряд $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$ сходится. Так как сходится остаток, то будет сходиться и исходный ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$.

Таким образом, совершенно неважно, выполнено ли второе условие признака Лейбница, начиная с первого, или же с тысячного элемента - ряд всё равно будет сходиться.

Отмечу, что признак Лейбница является достаточным, но не необходимым условием сходимости знакочередующихся рядов. Иными словами, выполнение условий признака Лейбница гарантирует сходимость ряда, но невыполнение оных условий не гарантирует ни сходимости, ни расходимости. Разумеется, невыполнение первого условия, т.е. случай $\lim_{n\to{\infty}}u_n\neq{0}$, означает расходимость ряда $\sum\limits_{n=n_0}^{\infty}(-1)^{n+1}u_n$, однако невыполнение второго условия может произойти как для сходящегося, так и расходящегося ряда.

Так как знакочередующиеся ряды частенько встречаются в стандартных типовых расчётах, то я составил схему, по которой можно исследовать на сходимость стандартный знакочередующийся ряд.

Разумеется, можно напрямую применять признак Лейбница, минуя проверку сходимости ряда из модулей. Однако для стандартных учебных примеров проверка ряда из модулей необходима, так как большинство авторов типовых расчетов требуют не просто выяснить, сходится ряд или нет, а определить характер сходимости (условная или абсолютная). Перейдем к примерам.

Пример №1

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ на сходимость.

Для начала выясним, действительно ли данный ряд знакочередующийся. Так как $n≥1$, то $4n-1≥3>0$ и $n^2+3n≥4>0$, т.е. при всех $n\in{N}$ имеем $\frac{4n-1}{n^2+3n}>0$. Таким образом, заданный ряд имеет вид $\sum\limits_{n=1}^{\infty}(-1)^{n+1}u_n$, где $u_n=\frac{4n-1}{n^2+3n}>0$, т.е. рассматриваемый ряд - знакочередующийся.

Обычно такая проверка делается устно, однако пропускать её крайне нежелательно: ошибки в типовых расчётах нередки. Часто бывает, что знаки членов заданного ряда начинают чередоваться не с первого члена ряда. В этом случае можно отбросить "мешающие" члены ряда и исследовать сходимость остатка (см. примечание в начале этой страницы).

Итак, нам задан знакочередующийся ряд. Будем следовать вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right| =\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n} $$

Проверим, сходится ли составленный ряд из модулей. Применим признак сравнения . Так как при всех $n\in{N}$ имеем $4n-1=3n+n-1≥3n$ и $n^2+3n≤n^2+3n^2=4n^2$, то:

$$ \frac{4n-1}{n^2+3n}≥ \frac{3n}{4n^2}=\frac{3}{4}\cdot\frac{1}{n} $$

Гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, поэтому будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{3}{4}\cdot\frac{1}{n}\right)$. Следовательно, согласно признаку сравнения ряд $\sum\limits_{n=1}^{\infty}\frac{4n-1}{n^2+3n}$ расходится. Обозначим $u_n=\frac{4n-1}{n^2+3n}$ и проверим, выполнены ли условия признака Лейбница для исходного знакочередующегося ряда. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{4n-1}{n^2+3n} =\lim_{n\to{\infty}}\frac{\frac{4}{n}-\frac{1}{n^2}}{1+\frac{3}{n}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. Немалое количество авторов предпочитает записать несколько первых членов ряда, а затем сделать вывод, что неравенство $u_n≥u_{n+1}$ выполнено.

Иными словами, это "доказательство" для данного ряда имело бы такой вид: $\frac{2}{3}≤\frac{5}{8}≤\frac{8}{15}≤\ldots$. После сравнения нескольких первых членов делается вывод: для остальных членов неравенство сохранится, каждый последующий будет не более предыдущего. Откуда взялся этот "метод доказательства" я не знаю, но он ошибочен. Например, для последовательности $v_n=\frac{10^n}{n!}$ получим такие первые члены: $v_1=10$, $v_2=50$, $v_3=\frac{500}{3}$, $v_4=\frac{1250}{3}$. Как видите, они возрастают, т.е., если ограничиться сравнением нескольких первых членов, то можно сделать вывод, что $v_{n+1}>v_n$ для всех $n\in{N}$. Однако такой вывод будет категорически неверным, так как начиная с $n=10$ элементы последовательности будут убывать.

Как же доказать неравенство $u_n≥u_{n+1}$? В общем случае для этого есть несколько способов. Самый простой в нашем случае - рассмотреть разность $u_n-u_{n+1}$ и выяснить её знак. В следующем примере рассмотрим иной способ: посредством доказательства убывания соответствующей функции.

$$ u_n-u_{n+1} =\frac{4n-1}{n^2+3n}-\frac{4(n+1)-1}{(n+1)^2+3(n+1)} =\frac{4n-1}{n^2+3n}-\frac{4n+3}{n^2+5n+4}=\\ =\frac{(4n-1)\cdot\left(n^2+5n+4\right)-\left(n^2+3n\right)\cdot(4n+3)}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)} =\frac{4n^2+2n-4}{\left(n^2+3n\right)\cdot\left(n^2+5n+4\right)}. $$

Так как $n≥1$, то $4n^2-4≥0$, откуда имеем $4n^2+2n-4>0$, т.е. $u_n-u_{n+1}>0$, $u_n>u_{n+1}$. Бывает, конечно, что неравенство $u_n≥u_{n+1}$ выполняется не с первого члена ряда, однако это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{4n-1}{n^2+3n}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}$ на сходимость.

Для начала рассмотрим выражение $\frac{5n-4}{\sqrt{2n^3-1}}$. Стоит произвести небольшую проверку корректности условия. Дело в том, что очень часто в условиях стандартных типовых расчётов можно встретить ошибки, когда подкоренное выражение является отрицательным, или же в знаменателе при некоторых значениях $n$ появляется ноль.

Дабы избежать таких неприятностей, произведём простенькое предварительное исследование. Так как при $n≥1$ имеем $2n^3≥2$, то $2n^3-1≥1$, т.е. выражение под корнем не может быть отрицательным или равняться нулю. Следовательно, условие вполне корректно. Выражение $\frac{5n-4}{\sqrt{2n^3-1}}$ определено при всех $n≥1$.

Добавлю, что при $n≥1$ верно неравенство $\frac{5n-4}{\sqrt{2n^3-1}}>0$, т.е. нам задан знакочередующийся ряд. Будем исследовать его согласно вышеприведённой . Для начала составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right| =\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}} $$

Проверим, сходится ли ряд, составленный из модулей членов заданного ряда. Применим признак сравнения . В решении предыдущего примера мы применяли первый признак сравнения. Здесь же, сугубо для разнообразия, применим второй признак сравнения (признак сравнения в предельной форме). Сравним ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$ с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$:

$$ \lim_{n\to\infty}\frac{\frac{5n-4}{\sqrt{2n^3-1}}}{\frac{1}{\sqrt{n}}} =\lim_{n\to\infty}\frac{5n\sqrt{n}-4\sqrt{n}}{\sqrt{2n^3-1}} =\lim_{n\to\infty}\frac{\frac{5n\sqrt{n}}{n\sqrt{n}}-\frac{4\sqrt{n}}{n\sqrt{n}}}{\sqrt{\frac{2n^3-1}{n^3}}} \lim_{n\to\infty}\frac{5-\frac{4}{n}}{\sqrt{2-\frac{1}{n^3}}} =\frac{5}{\sqrt{2}}. $$

Так как $\frac{5}{\sqrt{2}}\neq{0}$ и $\frac{5}{\sqrt{2}}\neq\infty$, то одновременно с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n-4}{\sqrt{2n^3-1}}$.

Итак, абсолютной сходимости заданный знакочередующийся ряд не имеет. Обозначим $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ и проверим, выполнены ли условия признака Лейбница. Найдём $\lim_{n\to{\infty}}u_n$:

$$ \lim_{n\to{\infty}}u_n =\lim_{n\to{\infty}}\frac{5n-4}{\sqrt{2n^3-1}} =\lim_{n\to{\infty}}\frac{\frac{5n}{n^{\frac{3}{2}}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{\frac{2n^3-1}{n^3}}} =\lim_{n\to{\infty}}\frac{\frac{5}{\sqrt{n}}-\frac{4}{n^{\frac{3}{2}}}}{\sqrt{2-\frac{1}{n^3}}} =0. $$

Первое условие признака Лейбница выполнено. Теперь нужно выяснить, выполнено ли неравенство $u_n≥u_{n+1}$. В прошлом примере мы рассмотрели один из способов доказательства этого неравенства: посредством выяснения знака разности $u_n-u_{n+1}$. В этот раз обратимся к иному способу: вместо $u_n=\frac{5n-4}{\sqrt{2n^3-1}}$ рассмотрим функцию $y(x)=\frac{5x-4}{\sqrt{2x^3-1}}$ при условии $x≥1$. Отмечу, что поведение данной функции при условии $x<1$ нам совершенно безразлично.

Наша цель состоит в том, чтобы доказать невозрастание (или убывание) функции $y(x)$. Если мы докажем, что функция $y(x)$ является невозрастающей, то для всех значений $x_2>x_1$ будем иметь $y(x_1)≥y(x_2)$. Полагая $x_1=n$ и $x_2=n+1$ получим, что из неравенства $n+1>n$ последует истинность неравенства $y(n)≥y(n+1)$. Так как $y(n)=u_n$, то неравенство $y(n)≥y(n+1)$ есть то же самое, что и $u_{n}≥u_{n+1}$.

Если же мы покажем, что $y(x)$ - убывающая функция, то из неравенства $n+1>n$ последует истинность неравенства $y(n)>y(n+1)$, т.е. $u_{n}>u_{n+1}$.

Найдём производную $y"(x)$ и выясним её знак для соответствующих значений $x$.

$$ y"(x)=\frac{(5x-4)"\cdot\sqrt{2x^3-1}-(5x-4)\cdot\left(\sqrt{2x^3-1}\right)"}{\left(\sqrt{2x^3-1}\right)^2} =\frac{5\cdot\sqrt{2x^3-1}-(5x-4)\cdot\frac{1}{2\sqrt{2x^3-1}}\cdot{6x^2}}{2x^3-1}=\\ =\frac{5\cdot\left(2x^3-1\right)-(5x-4)\cdot{3x^2}}{\left(2x^3-1\right)^{\frac{3}{2}}} =\frac{-5x^3+12x^2-5}{\left(2x^3-1\right)^{\frac{3}{2}}} $$

Полагаю, очевидно, что при достаточно больших положительных значениях $x≥1$ многочлен в знаменателе будет меньше нуля, т.е. $-5x^3+12x^2-5<0$. Эту "очевидность" несложно обосновать формально - если вспомнить курс алгебры. Дело в том, что согласно лемме о модуле старшего члена, при достаточно больших значениях $|x|$ знак многочлена совпадает с знаком его старшего члена. Адаптируясь к нашей задаче получаем, что существует такое число $c≥1$, то для всех $x≥c$ будет верным неравенство $-5x^3+12x^2-5<0$. В принципе, существования такого числа $c$ уже вполне достаточно для дальнейшего решения задачи.

Однако давайте подойдём к вопросу менее формально. Дабы не привлекать лишних лемм из алгебры, просто грубо оценим значение выражения $-5x^3+12x^2-5$. Учтём $-5x^3+12x^2-5=x^2(-5x+12)-5$. При $x≥3$ имеем $-5x+12<0$, посему $x^2(-5x+12)-5<0$.

Таким образом, при $x≥3$ имеем $y"(x)<0$, т.е. функция $y(x)$ убывает. А это, в свою очередь, означает, что при $n≥3$ верно неравенство $u_n>u_{n+1}$, т.е. второе условие признака Лейбница выполнено. Разумеется, мы показали выполнение второго условия не с $n=1$, а с $n=3$, но это несущественно (см. в начале страницы).

Таким образом, оба условия признака Лейбница выполнены. Так как при этом ряд $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{5n-4}{\sqrt{2n^3-1}}\right|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{4n-1}{n^2+3n}$ сходится условно.

Ответ : ряд сходится условно.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ на сходимость.

Данный пример не представляет большого интереса, поэтому я распишу его коротко. Нам задан знакочередующийся ряд, который вновь станем исследовать по . Составим ряд из модулей членов данного ряда:

$$ \sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right| =\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n} $$

Применим признак Д"Аламбера . Обозначая $u_n=\frac{3n+4}{2^n}$, получим $u_{n+1}=\frac{3n+7}{2^{n+1}}$.

$$ \lim_{n\to\infty}\frac{u_{n+1}}{u_{n}} =\lim_{n\to\infty}\frac{\frac{3n+7}{2^{n+1}}}{\frac{3n+4}{2^n}} =\frac{1}{2}\lim_{n\to\infty}\frac{3n+7}{3n+4} =\frac{1}{2}\lim_{n\to\infty}\frac{3+\frac{7}{n}}{3+\frac{4}{n}} =\frac{1}{2}\cdot{1}=\frac{1}{2}. $$

Так как $\frac{1}{2}<1$, то согласно признаку Д"Аламбера ряд $\sum\limits_{n=1}^{\infty}\frac{3n+4}{2^n}$ сходится. Из сходимости ряда $\sum\limits_{n=1}^{\infty}\left|(-1)^{n+1}\frac{3n+4}{2^n}\right|$, что ряд $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{3n+4}{2^n}$ сходится, причём сходится абсолютно.

Отмечу, что для решения заданного примера нам не потребовался признак Лейбница. Именно поэтому удобно сперва проверить сходимость ряда из модулей, а потом уже, при необходимости, исследовать сходимость исходного знакочередующегося ряда.

Ответ : ряд сходится абсолютно.